6.對(duì)某校高三年級(jí)學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù),根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖.
分組頻數(shù)頻率
[10,15)100.25
[15,20)24n
[20,25)mp
[25,30]20.05
合計(jì)M1
(1)求出表中M,p及圖中a的值;
(2)若該校高三學(xué)生有240人,試估計(jì)該校高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[10,15)內(nèi)的人數(shù);
(3)估計(jì)這次學(xué)生參加社區(qū)服務(wù)人數(shù)的眾數(shù)、中位數(shù)以及平均數(shù).

分析 (1)由分組[10,15)內(nèi)的頻數(shù)是10,頻率是0.25,求出M=40,由此能求出p及圖中a的值.
(2)由該校高三學(xué)生有240人,在[10,15)內(nèi)的頻率是0.25,能估計(jì)該校高三學(xué)生參加社區(qū)服務(wù)的次當(dāng)選在此區(qū)間內(nèi)的人數(shù).
(3)由頻率分布直方圖能估計(jì)這次學(xué)生參加社區(qū)服務(wù)人數(shù)的眾數(shù)、中位數(shù)以及平均數(shù).

解答 解:(1)由分組[10,15)內(nèi)的頻數(shù)是10,頻率是0.25,
得$\frac{10}{M}=0.25$,解得M=40,
∴10+24+m+2=40,
解得m=4,p=$\frac{m}{M}=0.10$,
∵a是對(duì)應(yīng)分組[15,20)的頻率與組距的商,
∴a=$\frac{24}{40×5}$=0.12.
(2)∵該校高三學(xué)生有240人,在[10,15)內(nèi)的頻率是0.25,
∴估計(jì)該校高三學(xué)生參加社區(qū)服務(wù)的次當(dāng)選在此區(qū)間內(nèi)的人數(shù)為:240×0.25=60.
(3)估計(jì)這次學(xué)生參加社區(qū)服務(wù)人數(shù)的眾數(shù)是$\frac{15+20}{2}$=17.5,
∵n=$\frac{24}{40}$=0.6,∴樣本中位數(shù)是15+$\frac{0.5-0.25}{a}$≈17.1,
估計(jì)這次學(xué)生參加社區(qū)服務(wù)人數(shù)的中位數(shù)是17.1,
樣本平均人數(shù)是:12.5×0.25+17.5×0.6+22.5×0.1+27.5×0.05=17.25,
估計(jì)這次學(xué)生參加社區(qū)服務(wù)人數(shù)的平均數(shù)為17.25.

點(diǎn)評(píng) 本題考查頻率分布列和頻率分布直方圖的應(yīng)用,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意頻率分布列和頻率分布直方圖的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在標(biāo)有“甲”的袋中有4個(gè)紅球和3個(gè)白球,這些球除顏色外完全相同.
(Ⅰ)若從袋中依次取出3個(gè)球,求在第一次取到紅球的條件下,后兩次均取到白球的概率;
(Ⅱ)現(xiàn)從甲袋中取出個(gè)2紅球,1個(gè)白球,裝入標(biāo)有“乙”的空袋.若從甲袋中任取2球,乙袋中任取1球,記取出的紅球的個(gè)數(shù)為X,求X的分布列和數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如果a∩b=M,a∥平面β,則b與β的位置關(guān)系是平行或相交.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知命題p:指數(shù)函數(shù)y=(1-a)x是R上的增函數(shù),命題q:不等式ax2+2x-1>0有解.若命題p是真命題,命題q是假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{2kx}{{x}^{2}+6k}$(k>0)
(1)若f(x)>m的解集為{x|x<-3,或x>-2},求不等式5mx2+kx+3>0的解集;
(2)若任意x≥3,使得f(x)<1恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.半徑為1的扇形AOB,∠AOB=120°,M,N分別為半徑OA,OB的中點(diǎn),P為弧AB上任意一點(diǎn),則$\overrightarrow{PM}•\overrightarrow{PN}$的取值范圍是[$\frac{3}{8}$,$\frac{5}{8}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=cos2(x-$\frac{π}{6}$)-cos2x,x∈R
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求y=f(x)在區(qū)間$[{-\frac{π}{3},\frac{π}{4}}]$上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.兩圓相交于兩點(diǎn)(k,1)和(1,3),兩圓的圓心都在直線x-y+$\frac{c}{2}$=0上,則k+c=( 。
A.-1B.2C.3D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.某研究機(jī)構(gòu)對(duì)兒童記憶能力x和識(shí)圖能力y進(jìn)行統(tǒng)計(jì)分析,得到如下數(shù)據(jù):
記憶能力x46810
識(shí)圖能力y3568
由表中數(shù)據(jù),求得線性回歸方程為,$\stackrel{∧}{y}$=$\frac{4}{5}$x+$\stackrel{∧}{a}$,若某兒童的記憶能力為11時(shí),則他的識(shí)圖能力約為(  )
A.8.5B.8.7C.8.9D.9

查看答案和解析>>

同步練習(xí)冊答案