7.已知R上的連續(xù)函數(shù)g(x)滿足:
①當(dāng)x>0時(shí),g'(x)>0恒成立(g'(x)為函數(shù)g(x)的導(dǎo)函數(shù));
②對(duì)任意的x∈R都有g(shù)(x)=g(-x),又函數(shù)f(x)滿足:對(duì)任意的x∈R,都有$f(\sqrt{3}+x)=f(x-\sqrt{3})$成立.
當(dāng)$x∈[-\sqrt{3},\sqrt{3}]$時(shí),f(x)=x3-3x.若關(guān)于x的不等式g[f(x)]≤g(a2-a+2)對(duì)$x∈[-\frac{3}{2}-2\sqrt{3},\frac{3}{2}+2\sqrt{3}]$恒成立,則a的取值范圍是( 。
A.a∈RB.0≤a≤1
C.$-\frac{1}{2}-\frac{{3\sqrt{3}}}{4}≤a≤-\frac{1}{2}+\frac{{3\sqrt{3}}}{4}$D.a≤0或a≥1

分析 由題意,g(x)是偶函數(shù),(0,+∞)單調(diào)知識(shí),f(x)是奇函數(shù),且是周期函數(shù),周期為2$\sqrt{3}$,關(guān)于x的不等式g[f(x)]≤g(a2-a+2)對(duì)$x∈[-\frac{3}{2}-2\sqrt{3},\frac{3}{2}+2\sqrt{3}]$恒成立,轉(zhuǎn)化為|f(x)|max≤a2-a+2,即可求出a的取值范圍.

解答 解:由題意,g(x)是偶函數(shù),(0,+∞)單調(diào)知識(shí),f(x)是奇函數(shù),且是周期函數(shù),周期為2$\sqrt{3}$,
當(dāng)$x∈[-\sqrt{3},\sqrt{3}]$時(shí),f(x)=x3-3x,f′(x)=3(x+1)(x-1),函數(shù)在x=-1處取得極大值2,x=1處取得極小值-2,
∵關(guān)于x的不等式g[f(x)]≤g(a2-a+2)對(duì)$x∈[-\frac{3}{2}-2\sqrt{3},\frac{3}{2}+2\sqrt{3}]$恒成立,
∴|f(x)|max≤a2-a+2,
∴a2-a+2≥2,
∴a2-a≥0,
∴a≤0或a≥1,
故選D.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)知識(shí)的綜合運(yùn)用,考查函數(shù)的單調(diào)性、奇偶性、極值,正確轉(zhuǎn)化是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.下列程序運(yùn)行后的結(jié)果為( 。
A.0B.-4C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.在等差數(shù)列{an}中,a4=3,a11=-3,則S14=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.設(shè)函數(shù)$f(x)=ax-\frac{x}$,曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為7x-4y-12=0,則a+b=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在一次對(duì)某班42名學(xué)生參加課外籃球、排球興趣小組(每人參加且只參加一個(gè)興趣小組)情況調(diào)查中,經(jīng)統(tǒng)計(jì)得到如下2×2列聯(lián)表:(單位:人)
籃球排球總計(jì)
男同學(xué)16622
女同學(xué)81220
總計(jì)241842
(Ⅰ)據(jù)此判斷是否有95%的把握認(rèn)為參加“籃球小組”或“排球小組”與性別有關(guān)?
(Ⅱ)在統(tǒng)計(jì)結(jié)果中,如果不考慮性別因素,按分層抽樣的方法從兩個(gè)興趣小組中隨機(jī)抽取7名同學(xué)進(jìn)行座談.
①求從“排球小組”中抽取幾人?
②已知甲、乙兩人都是從“排球小組”中抽取出來(lái)的.從抽取出的7人中任意再選2人參加校排球隊(duì),求甲、乙兩人至少有一人參加校排球隊(duì)的概率是多少?
下面臨界值表供參考:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.同時(shí)具備以下性質(zhì):(1)最小正周期為π;(2)圖象關(guān)于x=$\frac{π}{3}$對(duì)稱;(3)在[-$\frac{π}{6}$,$\frac{π}{3}$]上是增函數(shù)的是(  )
A.y=sin($\frac{x}{2}$+$\frac{π}{6}$)B.y=cos(2x+$\frac{π}{3}$)C.y=sin(2x-$\frac{π}{6}$)D.y=cos(2x-$\frac{π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若三點(diǎn)A(4,4),B(a,0),C(0,b),ab≠0,共線,則$\frac{1}{a}+\frac{1}$=$\frac{1}{4}$..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若f(x)是定義在R上的奇函數(shù),且x>0時(shí),f(x)=x2,則x<0時(shí),f(x)=-x2,若對(duì)任意的x∈[t,t+2],f(x+t)≥2f(x)恒成立,則實(shí)數(shù)t的取值范圍是[$\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.“x=1”是“x2-3x+2=0”的( 。
A.必要但不充分條件B.充分但不必要條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案