A. | a∈R | B. | 0≤a≤1 | ||
C. | $-\frac{1}{2}-\frac{{3\sqrt{3}}}{4}≤a≤-\frac{1}{2}+\frac{{3\sqrt{3}}}{4}$ | D. | a≤0或a≥1 |
分析 由題意,g(x)是偶函數(shù),(0,+∞)單調(diào)知識(shí),f(x)是奇函數(shù),且是周期函數(shù),周期為2$\sqrt{3}$,關(guān)于x的不等式g[f(x)]≤g(a2-a+2)對(duì)$x∈[-\frac{3}{2}-2\sqrt{3},\frac{3}{2}+2\sqrt{3}]$恒成立,轉(zhuǎn)化為|f(x)|max≤a2-a+2,即可求出a的取值范圍.
解答 解:由題意,g(x)是偶函數(shù),(0,+∞)單調(diào)知識(shí),f(x)是奇函數(shù),且是周期函數(shù),周期為2$\sqrt{3}$,
當(dāng)$x∈[-\sqrt{3},\sqrt{3}]$時(shí),f(x)=x3-3x,f′(x)=3(x+1)(x-1),函數(shù)在x=-1處取得極大值2,x=1處取得極小值-2,
∵關(guān)于x的不等式g[f(x)]≤g(a2-a+2)對(duì)$x∈[-\frac{3}{2}-2\sqrt{3},\frac{3}{2}+2\sqrt{3}]$恒成立,
∴|f(x)|max≤a2-a+2,
∴a2-a+2≥2,
∴a2-a≥0,
∴a≤0或a≥1,
故選D.
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)知識(shí)的綜合運(yùn)用,考查函數(shù)的單調(diào)性、奇偶性、極值,正確轉(zhuǎn)化是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
籃球 | 排球 | 總計(jì) | |
男同學(xué) | 16 | 6 | 22 |
女同學(xué) | 8 | 12 | 20 |
總計(jì) | 24 | 18 | 42 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=sin($\frac{x}{2}$+$\frac{π}{6}$) | B. | y=cos(2x+$\frac{π}{3}$) | C. | y=sin(2x-$\frac{π}{6}$) | D. | y=cos(2x-$\frac{π}{6}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 必要但不充分條件 | B. | 充分但不必要條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com