A. | $\frac{{3-\sqrt{3}}}{2}$ | B. | $\frac{{9-\sqrt{3}}}{2}$ | C. | $\frac{{6-\sqrt{3}}}{2}$ | D. | $\frac{{9+3\sqrt{3}}}{2}$ |
分析 確定a+b+c≥$\sqrt{3}$,利用柯西不等式($\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}$)(1-a+1-b+1-c)≥(1+1+1)2,即可求出$\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}$的最小值.
解答 解:∵0<a,b,c<1滿足條件ab+bc+ac=1,
∴(a+b+c)2≥3(ab+ac+bc)=3
∴a+b+c≥$\sqrt{3}$,
∵($\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}$)(1-a+1-b+1-c)≥(1+1+1)2
∴$\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}$≥$\frac{9}{3-(a+b+c)}$≥$\frac{9+3\sqrt{3}}{2}$.
當(dāng)且僅當(dāng)a=b=c=$\frac{\sqrt{3}}{3}$時(shí),$\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}$的最小值為$\frac{9+3\sqrt{3}}{2}$.
故選D.
點(diǎn)評(píng) 本題考查$\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}$的最小值,考查柯西不等式的運(yùn)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|1<x<3} | B. | {x|x≤0或1≤x<3} | C. | {x|x<3} | D. | {x|1≤x<3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1-e | B. | e | C. | -e | D. | e-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{\sqrt{63}}}{8}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | 4 | D. | $\frac{{\sqrt{5}}}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com