12.在平面直角坐標(biāo)系xOy中,由直線x=0,x=1,y=0與曲線y=ex圍成的封閉圖形的面積是( 。
A.1-eB.eC.-eD.e-1

分析 求出積分的上下限,然后利用定積分表示出圖形面積,最后利用定積分的定義進(jìn)行求解即

解答 解:由題意畫出封閉圖形,可得A(1,e)
由積分的幾何意義可得S=${∫}_{0}^{1}{e}^{x}dx={e}^{x}{|}_{0}^{1}$=e-1;
故選:D

點(diǎn)評 本題主要考查了定積分在求面積中的應(yīng)用,應(yīng)用定積分求平面圖形面積時(shí),積分變量的選取是至關(guān)重要的,屬于基礎(chǔ)題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.觀察下列等式:
(1+1)=2×1
(2+1)(2+2)=22×1×3
(3+1)(3+2)(3+3)=23×1×3×5

照此規(guī)律,第4個(gè)等式可表示為(4+1)(4+2)(4+3)(4+4)=24×1×3×5×7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求關(guān)于x的不等式$\frac{{a({x-1})}}{x-2}>1({a>0})$的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無限增加時(shí),多邊形的面積可無限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”.利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,其中n表示圓內(nèi)接正多邊形的邊數(shù),執(zhí)行此算法輸出的圓周率的近似值依次為(參考數(shù)據(jù):$\sqrt{3}$≈1.732,sin15°≈0.2588,sin75°≈0.1305)( 。
A.2.598,3,3.1048B.2.598,3,3.1056C.2.578,3,3.1069D.2.588,3,3.1108

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在(1+x)5-(1+x)6的展開式中,含x3的項(xiàng)的系數(shù)是( 。
A.-5B.6C.-10D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知a,b,c∈(0,1),且ab+bc+ac=1,則$\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}$的最小值為( 。
A.$\frac{{3-\sqrt{3}}}{2}$B.$\frac{{9-\sqrt{3}}}{2}$C.$\frac{{6-\sqrt{3}}}{2}$D.$\frac{{9+3\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若等差數(shù)列{an}的公差為2,且a5是a2與a6的等比中項(xiàng),則該數(shù)列的前n項(xiàng)和Sn取最小值時(shí),n的值等于6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列語句不是命題的是(  )
A.-3>4B.0.3是整數(shù)C.a>3D.4是3的約數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知$\vec a=(2,t,t),\vec b=(1-t,2t-1,0)$,則$|\vec b-\vec a|$的最小值是( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{6}$

查看答案和解析>>

同步練習(xí)冊答案