精英家教網 > 高中數學 > 題目詳情

已知函數=,其中a≠0.
(1)若對一切x∈R,≥1恒成立,求a的取值集合.
(2)在函數的圖像上取定兩點,記直線AB的斜率為K,問:是否存在x0∈(x1,x2),使成立?若存在,求的取值范圍;若不存在,請說明理由.

(1)的取值集合為
(2)存在使成立.且的取值范圍為

解析試題分析:(Ⅰ)若,則對一切,,這與題設矛盾,又,故

時,單調遞減;當時,單調遞增,故當時,
取最小值
于是對一切恒成立,當且僅當
.                 、

時,單調遞增;當時,單調遞減.
故當時,取最大值.因此,當且僅當時,①式成立.
綜上所述,的取值集合為
(Ⅱ)由題意知,



,則
時,單調遞減;當時,單調遞增.
故當,
從而
所以
因為函數在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使單調遞增,故這樣的是唯一的,且.故當且僅當時,
綜上所述,存在使成立.且的取值范圍為
考點:導數的運用
點評:主要是考查了導數在研究函數最值,以及函數的最值的運用,屬于難度題。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知,直線與函數的圖像都相切,且與函數的圖像的切點的橫坐標為1.  
(1)求直線的方程及的值;
(2)若(其中的導函數),求函數的最大值;
(3)當時,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函 數.
(1)若曲線在點處的切線與直線垂直,求函數的單調區(qū)間;
(2)若對于都有成立,試求的取值范圍;
(3)記.當時,函數在區(qū)間上有兩個零點,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(Ⅰ)試判斷函數的單調性,并說明理由;
(Ⅱ)若恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=ax3+bx2-x(x∈R,a、b是常數,a≠0),且當x=1和x=2時,函數f(x)取得極值.(I)求函數f(x)的解析式;
(Ⅱ)若曲線y=f(x)與g(x)=有兩個不同的交點,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,.
(Ⅰ) 求函數在點處的切線方程;
(Ⅱ) 若函數在區(qū)間上均為增函數,求的取值范圍;
(Ⅲ) 若方程有唯一解,試求實數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知奇函數時的圖象是如圖所示的拋物線的一部分.

(1)請補全函數的圖象;
(2)寫出函數的表達式;
(3)寫出函數的單調區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數)是定義在上的奇函數,且時,函數取極值1.
(Ⅰ)求函數的解析式;
(Ⅱ)令,若),不等式恒成立,求實數的取值范圍;

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
求(1) 的定義域;
(2)判斷在其定義域上的奇偶性,并予以證明,
(3)求的解集。

查看答案和解析>>

同步練習冊答案