14.極坐標系中,已知圓ρ=10cos$({\frac{π}{3}-θ})$
(1)求圓的直角坐標方程.
(2)設(shè)P是圓上任一點,求點P到直線$\sqrt{3}x-y+2=0$距離的最大值.

分析 (1)根據(jù)極坐標與直角坐標方程互換的公式,即可化解.
(2)P是圓上任一點,點P到直線$\sqrt{3}x-y+2=0$距離的最大值為:d+r,即可得答案.

解答 解(1)圓ρ=10cos$({\frac{π}{3}-θ})$
化簡可得:ρ=10cos$\frac{π}{3}$cosθ+10sin$\frac{π}{3}$sinθ
ρ2=5ρcosθ+5$\sqrt{3}$ρsinθ
∴${x}^{2}+{y}^{2}-5x-5\sqrt{3}y=0$.
故得圓的直角坐標方程為:${x}^{2}+{y}^{2}-5x-5\sqrt{3}y=0$.
(2)由(1)可知圓的圓心為($\frac{5}{2}$,$\frac{5\sqrt{3}}{2}$),半徑r=5,
題意:點P到直線$\sqrt{3}x-y+2=0$距離的最大值為:圓心到直線的距離+半徑,即d+r.
d=$\frac{|\sqrt{3}×\frac{5}{2}-\frac{5\sqrt{3}}{2}+2|}{2}=1$
∴最大距離為:1+5=6.

點評 本題主要考查了極坐標與直角坐標方程互換,以及圓上動點與定直線的最值問題.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)的圖象是連續(xù)不斷的,有如下的x,f(x)對應(yīng)值表:
x1234567
f(x)123.521.5-7.8211.57-53.7-126.7-129.6
那么函數(shù)f(x)在區(qū)間[1,6]上的零點至少有( 。
A.5個B.4個C.3個D.2個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知a∈R,若$f(x)=(x+\frac{a}{x}){e^x}$在區(qū)間(0,1)上只有一個極值點,則a的取值范圍為a>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=|x2+bx|(b∈R),當(dāng)x∈[0,1]時,f(x)的最大值為M(b),則M(b)的最小值是( 。
A.3-2$\sqrt{2}$B.4-2$\sqrt{3}$C.1D.5-2$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在正方體ABCD-A1B1C1D1中,M,N分別是AB,BC的中點. 
(1)求證:平面B1MN⊥平面BB1D1D;
(2)在棱DD1上是否存在一點P,使得BD1∥平面PMN,若存在,求D1P:PD的比值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若數(shù)列{an}滿足a1=$\sqrt{3}$,an+1=[an]+$\frac{1}{\{{a}_{n}\}}$([an]與{an}分別表示an的整數(shù)部分與小數(shù)部分),則a2016=(  )
A.3023+$\sqrt{3}$B.3023+$\frac{\sqrt{3}-1}{2}$C.3020+$\sqrt{3}$D.3020+$\frac{\sqrt{3}-1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.代數(shù)式$1+\frac{1}{{1+\frac{1}{1+…}}}$中省略號“…”代表以此方式無限重復(fù),因原式是一個固定值,可以用如下方法求得:令原式=t,則1+$\frac{1}{t}$=t,則t2-t-1=0,取正值得t=$\frac{\sqrt{5}+1}{2}$,用類似方法可得$\sqrt{6+\sqrt{6+\sqrt{6+…}}}$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知直線l1:ax-y+2a=0,l2:(2a-1)x+ay=0互相垂直,則a的值是( 。
A.0B.1C.0或1D.0或-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}中,a1=2,${a_{n+1}}=2-\frac{1}{a_n}$,數(shù)列{bn}中,${b_n}=\frac{1}{{{a_n}-1}}$,其中n∈N*;
(1)求證:數(shù)列{bn}是等差數(shù)列;
(2)若Sn是數(shù)列{bn}的前n項和,求$\frac{1}{S_1}+\frac{1}{S_2}+…+\frac{1}{S_n}$的值.

查看答案和解析>>

同步練習(xí)冊答案