【題目】若數(shù)列滿足:對于任意,均為數(shù)列中的項,則稱數(shù)列數(shù)列

1)若數(shù)列的前項和,,試判斷數(shù)列是否為數(shù)列?說明理由;

2)若公差為的等差數(shù)列數(shù)列,求的取值范圍;

3)若數(shù)列數(shù)列,,且對于任意,均有,求數(shù)列的通項公式.

【答案】1)不是,見解析(23

【解析】

1)利用遞推關系求出數(shù)列的通項公式,進一步驗證時,是否為數(shù)列中的項,即可得答案;

(2)由題意得,再對公差進行分類討論,即可得答案;

(3)由題意得數(shù)列為等差數(shù)列,設數(shù)列的公差為,再根據(jù)不等式得到公差的值,即可得答案;

1)當時,

,所以

所以

時,,而

所以時,不是數(shù)列中的項,故數(shù)列不是為數(shù)列

2)因為數(shù)列是公差為的等差數(shù)列,

所以

因為數(shù)列數(shù)列

所以任意,存在,使得,即有

①若,則只需,使得,從而得是數(shù)列中的項.

②若,則.此時,當時,不為正整數(shù),所以不符合題意.綜上,

3)由題意,所以,

又因為,且數(shù)列數(shù)列,

所以,即,所以數(shù)列為等差數(shù)列.

設數(shù)列的公差為,則有,

,得,

整理得,①

.②

,取正整數(shù)

則當時,,

與①式對應任意恒成立相矛盾,因此

同樣根據(jù)②式可得,

所以.又,所以

經(jīng)檢驗當時,①②兩式對應任意恒成立,

所以數(shù)列的通項公式為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為為參數(shù)),曲線的參數(shù)方程為為參數(shù)),以該直角坐標系的原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為.

(Ⅰ)分別求曲線的極坐標方程和曲線的直角坐標方程;

(Ⅱ)設直線交曲線,兩點,交曲線兩點,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C)的一個焦點為,點C.

1)求橢圓C的方程;

2)過點且斜率不為0的直線l與橢圓C相交于M,N兩點,橢圓長軸的兩個端點分別為,相交于點Q,求證:點Q在某條定直線上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調性;

2)若,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)討論的單調性;

2)當時,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的是( )

A.回歸直線至少經(jīng)過其樣本數(shù)據(jù)中的一個點

B.從獨立性檢驗可知有99%的把握認為吃地溝油與患胃腸癌有關系時,我們就說如果某人吃地溝油,那么他有99%可能患胃腸癌

C.在殘差圖中,殘差點分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高

D.將一組數(shù)據(jù)的每一個數(shù)據(jù)都加上或減去同一個常數(shù)后,其方差也要加上或減去這個常數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

時,取得極值,求的值并判斷是極大值點還是極小值點;

當函數(shù)有兩個極值點,,且時,總有成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知曲線的參數(shù)方程為為參數(shù)).以直角坐標系的原點為極點,軸的正半軸為極軸建立坐標系,曲線的極坐標方程為.

(1)求的普通方程和的直角坐標方程;

(2)若過點的直線交于,兩點,與交于,兩點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】石嘴山市第三中學高三年級統(tǒng)計學生的最近20次數(shù)學周測成績(滿分150分),現(xiàn)有甲乙兩位同學的20次成績如莖葉圖所示:

1)根據(jù)莖葉圖求甲乙兩位同學成績的中位數(shù),并將同學乙的成績的頻率分布直方圖填充完整;

(2)根據(jù)莖葉圖比較甲乙兩位同學數(shù)學成績的平均值及穩(wěn)定程度(不要求計算出具體值,給出結論即可);

(3)現(xiàn)從甲乙兩位同學的不低于140分的成績中任意選出2個成績,記事件為“其中2個成績分別屬于不同的同學”,求事件發(fā)生的概率.

查看答案和解析>>

同步練習冊答案