若曲線f(x)=x3+x-2在p0處的切線垂直于直線x+4y-1=0,則p0點(diǎn)的坐標(biāo)為( 。
A、(1,0)
B、(2,8)
C、(2,8)和(-1,-4)
D、(1,0)和(-1,-4)
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:先求導(dǎo)函數(shù),然后由垂直的條件令導(dǎo)函數(shù)等于4建立方程,求出方程的解,即可求出切點(diǎn)的橫坐標(biāo),從而可求出切點(diǎn)坐標(biāo).
解答: 解:由y=x3+x-2,得y′=3x2+1,
由于直線x+4y-1=0的斜率為-
1
4
,
由垂直的條件得3x2+1=4,解之得x=±1.
當(dāng)x=1時(shí),y=0;當(dāng)x=-1時(shí),y=-4.
∴切點(diǎn)P0的坐標(biāo)為(1,0)或(-1,-4).
故選D.
點(diǎn)評(píng):利用導(dǎo)數(shù)研究函數(shù)的性質(zhì)是導(dǎo)數(shù)的重要應(yīng)用之一,導(dǎo)數(shù)的廣泛應(yīng)用為我們解決函數(shù)問題提供了有力的幫助.本題主要考查利用導(dǎo)數(shù)求切點(diǎn)的坐標(biāo).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在三角形中,A、B、C分別是三內(nèi)角,有:若cosA<cosB,則A>B.則類比可得( 。
A、若sinA<sinB,則A>B
B、若sinA<sinB,則A<B
C、若tanA<tanB,則A>B
D、以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“a2>b3是“a4>b6”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題p:?x∈(0,+∞),(
1
2
x<(
1
3
x的否定是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

5
log5a2
化簡(jiǎn)的結(jié)果是( 。
A、-aB、a2
C、|a|D、a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)各項(xiàng)均為正數(shù)的等比數(shù)列{an}的前n項(xiàng)和為Sn.若S2=3a2+2,S4=3a4+2,則數(shù)列{an}的公比q=(  )
A、1
B、-1
C、
3
2
D、-1或
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)(π,1)且與曲線y=sinx+cosx在點(diǎn)(
π
2
,1)處的切線垂直的直線方程為( 。
A、y=x-1+π
B、y=x+1-π
C、y=-x+1+π
D、y=-x-1+π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={7,log2(a+3)},集合B={a,b},若A∩B={2},則A∪B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正三棱柱ABC-A1B1C1的底面邊長(zhǎng)為a,側(cè)棱長(zhǎng)為
2
2
a
,點(diǎn)D在棱A1C1上.
(1)若A1D=DC1,求證:直線BC1∥平面AB1D;
(2)是否存點(diǎn)D,使平面AB1D⊥平面ABB1A1,若存在,請(qǐng)確定點(diǎn)D的位置,若不存在,請(qǐng)說明理由;
(3)請(qǐng)指出點(diǎn)D的位置,使二面角A1-AB1-D平面角的大小為arctan2.

查看答案和解析>>

同步練習(xí)冊(cè)答案