3.函數(shù)f(x)=$\frac{1}{5}$sin(x+$\frac{π}{3}$)+cos(x-$\frac{π}{6}$)的最大值為( 。
A.$\frac{6}{5}$B.1C.$\frac{3}{5}$D.$\frac{1}{5}$

分析 利用誘導(dǎo)公式化簡(jiǎn)函數(shù)的解析式,通過(guò)正弦函數(shù)的最值求解即可.

解答 解:函數(shù)f(x)=$\frac{1}{5}$sin(x+$\frac{π}{3}$)+cos(x-$\frac{π}{6}$)=$\frac{1}{5}$sin(x+$\frac{π}{3}$)+cos(-x+$\frac{π}{6}$)=$\frac{1}{5}$sin(x+$\frac{π}{3}$)+sin(x+$\frac{π}{3}$)
=$\frac{6}{5}$sin(x+$\frac{π}{3}$)$≤\frac{6}{5}$.
故選:A.

點(diǎn)評(píng) 本題考查誘導(dǎo)公式的應(yīng)用,三角函數(shù)的最值,正弦函數(shù)的有界性,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知α∈(0,$\frac{π}{2}$),tanα=2,則cos(α-$\frac{π}{4}$)=$\frac{3\sqrt{10}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱臺(tái)形玻璃容器Ⅱ的高均為32cm,容器Ⅰ的底面對(duì)角線AC的長(zhǎng)為10$\sqrt{7}$cm,容器Ⅱ的兩底面對(duì)角線EG,E1G1的長(zhǎng)分別為14cm和62cm.分別在容器Ⅰ和容器Ⅱ中注入水,水深均為12cm.現(xiàn)有一根玻璃棒l,其長(zhǎng)度為40cm.(容器厚度、玻璃棒粗細(xì)均忽略不計(jì))
(1)將l放在容器Ⅰ中,l的一端置于點(diǎn)A處,另一端置于側(cè)棱CC1上,求l沒(méi)入水中部分的長(zhǎng)度;
(2)將l放在容器Ⅱ中,l的一端置于點(diǎn)E處,另一端置于側(cè)棱GG1上,求l沒(méi)入水中部分的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),四點(diǎn)P1(1,1),P2(0,1),P3(-1,$\frac{{\sqrt{3}}}{2}$),P4(1,$\frac{{\sqrt{3}}}{2}$)中恰有三點(diǎn)在橢圓C上.
(1)求C的方程;
(2)設(shè)直線l不經(jīng)過(guò)P2點(diǎn)且與C相交于A,B兩點(diǎn).若直線P2A與直線P2B的斜率的和為-1,證明:l過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=$\sqrt{3}$cos(2x-$\frac{π}{3}$)-2sinxcosx.
(I)求f(x)的最小正周期;
(II)求證:當(dāng)x∈[-$\frac{π}{4}$,$\frac{π}{4}$]時(shí),f(x)≥-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.某超市計(jì)劃按月訂購(gòu)一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷(xiāo)售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:
最高氣溫[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)
天數(shù)216362574
以最高氣溫位于各區(qū)間的頻率估計(jì)最高氣溫位于該區(qū)間的概率.
(1)求六月份這種酸奶一天的需求量不超過(guò)300瓶的概率;
(2)設(shè)六月份一天銷(xiāo)售這種酸奶的利潤(rùn)為Y(單位:元),當(dāng)六月份這種酸奶一天的進(jìn)貨量為450瓶時(shí),寫(xiě)出Y的所有可能值,并估計(jì)Y大于零的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.在平面直角坐標(biāo)系xOy中,角α與角β均以O(shè)x為始邊,它們的終邊關(guān)于y軸對(duì)稱(chēng),若sinα=$\frac{1}{3}$,則cos(α-β)=-$\frac{7}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知sin(A+C)=8sin2$\frac{B}{2}$.
(1)求cosB;
(2)若a+c=6,△ABC的面積為2,求b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)M在橢圓C:$\frac{{x}^{2}}{2}$+y2=1上,過(guò)M作x軸的垂線,垂足為N,點(diǎn)P滿(mǎn)足$\overrightarrow{NP}$=$\sqrt{2}$$\overrightarrow{NM}$.
(1)求點(diǎn)P的軌跡方程;
(2)設(shè)點(diǎn)Q在直線x=-3上,且$\overrightarrow{OP}$•$\overrightarrow{PQ}$=1.證明:過(guò)點(diǎn)P且垂直于OQ的直線l過(guò)C的左焦點(diǎn)F.

查看答案和解析>>

同步練習(xí)冊(cè)答案