A. | [kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z) | B. | [kπ,kπ+$\frac{π}{2}$](k∈Z) | C. | [kπ-$\frac{π}{6}$,kπ+$\frac{2π}{3}$](k∈Z) | D. | [kπ-$\frac{π}{2}$,kπ](k∈Z) |
分析 由題意求得φ的值,利用正弦函數(shù)的性質(zhì),求得f(x)的單調(diào)遞增區(qū)間.
解答 解:若f(x)≤|f($\frac{π}{6}$)|對x∈R恒成立,
則f($\frac{π}{6}$)為函數(shù)的函數(shù)的最大值或最小值,
即2×$\frac{π}{6}$+φ=kπ+$\frac{π}{2}$,k∈Z,
則φ=kπ+$\frac{π}{6}$,k∈Z,
又f($\frac{π}{2}$)>f(π),sin(π+φ)=-sinφ>sin(2π+φ)=sinφ,sinφ<0.
令k=-1,此時(shí)φ=-$\frac{5π}{6}$,滿足條件sinφ<0,
令2x-$\frac{5π}{6}$∈[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$],k∈Z,
解得:x∈[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$](k∈Z).
則f(x)的單調(diào)遞增區(qū)間是[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$](k∈Z).
故選C.
點(diǎn)評 本題考查的知識點(diǎn)是函數(shù)y=Asin(ωx+φ)的圖象變換、三角函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 函數(shù)的極大值就是函數(shù)的最大值 | |
B. | 函數(shù)的極小值就是函數(shù)的最小值 | |
C. | 函數(shù)的最值一定是極值 | |
D. | 閉區(qū)間上的連續(xù)函數(shù)一定存在最大值與最小值 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{4\sqrt{3}}}{3}$ | B. | $\frac{16}{3}$ | C. | $\frac{64}{3}$ | D. | 32 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com