6.已知函數(shù)f(x)=sin(2x+φ),其中φ為實(shí)數(shù),若f(x)≤|f($\frac{π}{6}$)|對x∈R恒成立,且f($\frac{π}{2}$)>f(π),則f(x)的單調(diào)遞增區(qū)間是( 。
A.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z)B.[kπ,kπ+$\frac{π}{2}$](k∈Z)C.[kπ-$\frac{π}{6}$,kπ+$\frac{2π}{3}$](k∈Z)D.[kπ-$\frac{π}{2}$,kπ](k∈Z)

分析 由題意求得φ的值,利用正弦函數(shù)的性質(zhì),求得f(x)的單調(diào)遞增區(qū)間.

解答 解:若f(x)≤|f($\frac{π}{6}$)|對x∈R恒成立,
則f($\frac{π}{6}$)為函數(shù)的函數(shù)的最大值或最小值,
即2×$\frac{π}{6}$+φ=kπ+$\frac{π}{2}$,k∈Z,
則φ=kπ+$\frac{π}{6}$,k∈Z,
又f($\frac{π}{2}$)>f(π),sin(π+φ)=-sinφ>sin(2π+φ)=sinφ,sinφ<0.
令k=-1,此時(shí)φ=-$\frac{5π}{6}$,滿足條件sinφ<0,
令2x-$\frac{5π}{6}$∈[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$],k∈Z,
解得:x∈[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$](k∈Z).
則f(x)的單調(diào)遞增區(qū)間是[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$](k∈Z).
故選C.

點(diǎn)評 本題考查的知識點(diǎn)是函數(shù)y=Asin(ωx+φ)的圖象變換、三角函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.圓心在直線5x-3y=8上,又與兩坐標(biāo)軸相切的圓的方程是(x-4)2+(y-4)2=16和(x-1)2+(y+1)2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,等比數(shù)列{bn}的各項(xiàng)均為正數(shù),公比為q,且滿足:a1=3,b1=1,b2+S2=12,S2=b2q.
(1)求an與bn;
(2)設(shè)cn=3bn-2λ•$\frac{{a}_{n}}{3}$(λ∈R),若數(shù)列{cn}是遞增數(shù)列,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知數(shù)列{an}中,a1=-2,a2=3且$\frac{{a}_{n+2}-3{a}_{n+1}}{{a}_{n+1}-3{a}_{n}}$=3,則數(shù)列{an}的前n項(xiàng)和Sn=$\frac{13+(6n-13)•{3}^{n}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若f(x)=$\frac{1}{\sqrt{lo{g}_{\frac{1}{2}}(2x-1)}}$,則f(x+1)的定義域?yàn)椋ā 。?table class="qanwser">A.(-$\frac{1}{2}$,0)B.(-$\frac{1}{2}$,0]C.(-$\frac{1}{2}$,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若母線長是$2\sqrt{2}$cm的圓錐的軸截面的面積是4cm2,則此圓錐的高是2cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列說法正確的是( 。
A.函數(shù)的極大值就是函數(shù)的最大值
B.函數(shù)的極小值就是函數(shù)的最小值
C.函數(shù)的最值一定是極值
D.閉區(qū)間上的連續(xù)函數(shù)一定存在最大值與最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知$2\overrightarrow a+\overrightarrow b=(3\;,\;3)\;,\;\;\overrightarrow a-\overrightarrow b=(3\;,\;0)$.
求(1)$\overrightarrow b$的單位向量$\overrightarrow{b_0}$;
(2)$\overrightarrow a\;在\;\overrightarrow b$方向上的投影.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知正方體的外接球的體積為$\frac{32}{3}π$,則該正方體的表面積為( 。
A.$\frac{{4\sqrt{3}}}{3}$B.$\frac{16}{3}$C.$\frac{64}{3}$D.32

查看答案和解析>>

同步練習(xí)冊答案