18.下列說法正確的是( 。
A.函數(shù)的極大值就是函數(shù)的最大值
B.函數(shù)的極小值就是函數(shù)的最小值
C.函數(shù)的最值一定是極值
D.閉區(qū)間上的連續(xù)函數(shù)一定存在最大值與最小值

分析 根據(jù)函數(shù)極值和最值的定義和性質(zhì)逐一判斷四個選項即可得到結(jié)論.

解答 解:函數(shù)的極大值或極小值時局部性質(zhì),而函數(shù)的最大值是函數(shù)的整體性質(zhì),
∴函數(shù)的極大值不一定是函數(shù)的最大值,函數(shù)的極小值不一定是函數(shù)的最小值,閉區(qū)間在端點處取得最值時不是極值.
故A,B,C不正確,
閉區(qū)間上的連續(xù)函數(shù)一定存在最大值與最小值,故D正確.
故選:D.

點評 本題主要考查函數(shù)極值和函數(shù)最值關(guān)系的判斷,根據(jù)函數(shù)極值和最值的性質(zhì)是解決本題的關(guān)鍵,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)$f(x)=\sqrt{2}cos(2x-\frac{π}{4})$,x∈R.
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)求函數(shù)f(x)在區(qū)間$[-\frac{π}{8},\frac{π}{2}]$上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知a,b∈R,且ex≥a(x-1)+b對x∈R恒成立,則ab的最大值是( 。
A.$\frac{1}{2}{e^3}$B.$\frac{{\sqrt{2}}}{2}{e^3}$C.$\frac{{\sqrt{3}}}{2}{e^3}$D.e3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=sin(2x+φ),其中φ為實數(shù),若f(x)≤|f($\frac{π}{6}$)|對x∈R恒成立,且f($\frac{π}{2}$)>f(π),則f(x)的單調(diào)遞增區(qū)間是( 。
A.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z)B.[kπ,kπ+$\frac{π}{2}$](k∈Z)C.[kπ-$\frac{π}{6}$,kπ+$\frac{2π}{3}$](k∈Z)D.[kπ-$\frac{π}{2}$,kπ](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.方程x2+y2+Dx+Ey+F=0表示以(-2,3)為圓心,4為半徑的圓,則D,E,F(xiàn)的值分別為( 。
A.4,-6,3B.-4,6,3C.-4,-6,3D.4,-6,-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知四邊形ABCD為直角梯形,AB∥CD,AB=4,BC=CD=2,AB⊥BC,現(xiàn)將該梯形繞AB所在直線旋轉(zhuǎn)一周,得到一個封閉的幾何體,求該幾何體的表面積及體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,把f(x)的圖象向右平移$\frac{π}{3}$個單位長度得到g(x)的圖象,則g(x)的單調(diào)遞增區(qū)間是( 。
A.$[{kπ-\frac{5π}{12},kπ+\frac{π}{12}}],k∈z$B.$[{kπ-\frac{π}{6},kπ+\frac{π}{3}}],k∈z$
C.$[{kπ-\frac{π}{12},kπ+\frac{5π}{12}}],k∈z$D.$[{kπ+\frac{π}{6},kπ+\frac{5π}{6}}],k∈z$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.直線y=-x-1的傾斜角為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知復(fù)數(shù)z1=3-2i,z2=-2+3i.
(1)求z1z2;
(2)若復(fù)數(shù)z滿足$\frac{1}{z}=\frac{1}{z_1}+\frac{1}{z_2}$,求|z|.

查看答案和解析>>

同步練習(xí)冊答案