18.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,等比數(shù)列{bn}的各項(xiàng)均為正數(shù),公比為q,且滿足:a1=3,b1=1,b2+S2=12,S2=b2q.
(1)求an與bn;
(2)設(shè)cn=3bn-2λ•$\frac{{a}_{n}}{3}$(λ∈R),若數(shù)列{cn}是遞增數(shù)列,求λ的取值范圍.

分析 (1)通過設(shè)公差為d,利用已知條件得到方程組可求出d=q=3,進(jìn)而利用公式即得結(jié)論;
(2)通過(1)可知cn=3n-2λn,利用cn<cn+1可知λ<3n恒成立,進(jìn)而可知λ<3.

解答 解:(1)設(shè)公差為d,則$\left\{\begin{array}{l}{q+(6+d)=12}\\{6+d={q}^{2}}\end{array}\right.$,解得$\left\{\begin{array}{l}{d=3}\\{q=3}\end{array}\right.$,
所以an=3+3(n-1)=3n,bn=3n-1
(2)由(1)可知cn=3n-2λn,
由數(shù)列{cn}是遞增數(shù)列,可知cn<cn+1恒成立,
即3n-2λn<3n+1-2λ(n+1)恒成立,即λ<3n恒成立,
顯然,數(shù)列{3n}是遞增數(shù)列,
∴當(dāng)n=1時(shí),3n取最小值3,
所以λ<3.

點(diǎn)評 本題考查數(shù)列的通項(xiàng),考查數(shù)列的單調(diào)性,注意解題方法的積累,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知$\overrightarrow a=(-3,4),\overrightarrow b=(-2,1)$,則$\overrightarrow a$在$\overrightarrow b$上的投影為( 。
A.-2B.2C.$-2\sqrt{5}$D.$2\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)$f(x)=\sqrt{2}cos(2x-\frac{π}{4})$,x∈R.
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)求函數(shù)f(x)在區(qū)間$[-\frac{π}{8},\frac{π}{2}]$上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年江西省南昌市高一下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:填空題

在銳角△ABC中,BC=3,AB=,∠C=,則∠A=_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知等差數(shù)列{an}滿足:a1+a5=4,則數(shù)列$\left\{{{2^{a_n}}}\right\}$的前5項(xiàng)之積為1024.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在△ABC中,根據(jù)條件判斷三角形形狀
(1)$\frac{a}{cosA}$=$\frac{cosB}$=$\frac{c}{cosC}$;
(2)sinA=2sinBcosC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知a,b∈R,且ex≥a(x-1)+b對x∈R恒成立,則ab的最大值是(  )
A.$\frac{1}{2}{e^3}$B.$\frac{{\sqrt{2}}}{2}{e^3}$C.$\frac{{\sqrt{3}}}{2}{e^3}$D.e3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=sin(2x+φ),其中φ為實(shí)數(shù),若f(x)≤|f($\frac{π}{6}$)|對x∈R恒成立,且f($\frac{π}{2}$)>f(π),則f(x)的單調(diào)遞增區(qū)間是( 。
A.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z)B.[kπ,kπ+$\frac{π}{2}$](k∈Z)C.[kπ-$\frac{π}{6}$,kπ+$\frac{2π}{3}$](k∈Z)D.[kπ-$\frac{π}{2}$,kπ](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.直線y=-x-1的傾斜角為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{3π}{4}$

查看答案和解析>>

同步練習(xí)冊答案