18.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow$|=1.且對(duì)于任意實(shí)數(shù)x,不等式|$\overrightarrow{a}$+x$\overrightarrow$|≥|$\overrightarrow{a}$+$\overrightarrow$|恒成立,設(shè)$\overrightarrow{a}$,$\overrightarrow$的夾角為θ.則sinθ等于(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{1}{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{6}}{3}$

分析 根據(jù)向量數(shù)量積的定義將不等式恒成立進(jìn)行轉(zhuǎn)化,利用判別式△的關(guān)系進(jìn)行求解即可.

解答 解:∵不等式|$\overrightarrow{a}$+x$\overrightarrow$|≥|$\overrightarrow{a}$+$\overrightarrow$|恒成立,
∴不等式|$\overrightarrow{a}$+x$\overrightarrow$|2≥|$\overrightarrow{a}$+$\overrightarrow$|2恒成立,
即|$\overrightarrow{a}$|2+x2|$\overrightarrow$|2+2x|$\overrightarrow{a}$||$\overrightarrow$cosθ≥|$\overrightarrow{a}$|2+|$\overrightarrow$|2+2|$\overrightarrow{a}$||$\overrightarrow$|cosθ,
則x2+2$\sqrt{3}$xcosθ≥1+2$\sqrt{3}$cosθ,
即x2+2$\sqrt{3}$xcosθ-(1+2$\sqrt{3}$cosθ)≥0恒成立,
則判別式△=12cos2θ+4(1+2$\sqrt{3}$cosθ)≤0,
即($\sqrt{3}$cosθ+1)2≤0,
則$\sqrt{3}$cosθ+1=0,則cosθ=-$\frac{\sqrt{3}}{3}$,
則sinθ=$\sqrt{1-(-\frac{\sqrt{3}}{3})^{2}}$=$\sqrt{1-\frac{3}{9}}$=$\frac{\sqrt{6}}{3}$,
故選:D.

點(diǎn)評(píng) 本題主要考查向量數(shù)量積的應(yīng)用,根據(jù)不等式恒成立進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在△ABC中,已知|$\overrightarrow{AB}$|=|$\overrightarrow{AC}$|=4且$\overrightarrow{AB}$•$\overrightarrow{AC}$=8,則該三角形是( 。
A.等邊三角形B.等腰直角三角形C.等腰三角形D.不能判斷形狀

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知角α終邊經(jīng)過(guò)點(diǎn)P(3,2).
(Ⅰ)求$\frac{sin(π-α)+4cos(π+α)}{2sin(\frac{π}{2}-α)-3cos(\frac{π}{2}+α)}$的值;
(Ⅱ)求tan(2α+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知直角△ABC,AB=AC=3,P,Q分別為邊AB,BC上的點(diǎn),M,N是平面上兩點(diǎn),若$\overrightarrow{AP}$+$\overrightarrow{AM}$=0,($\overrightarrow{PB}$+$\overrightarrow{BQ}$)•$\overrightarrow{BC}$=0,$\overrightarrow{PN}$=3$\overrightarrow{PQ}$,且直線MN經(jīng)過(guò)△ABC的外心,則$|\overrightarrow{BP}|$=(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.把一顆骰子投擲兩次,記第一次出現(xiàn)的點(diǎn)數(shù)為a,第二次出現(xiàn)的點(diǎn)數(shù)為b.已知方程組$\left\{\begin{array}{l}ax+by=2\\ 2x+y=3\end{array}\right.$.
(Ⅰ)求方程組只有一個(gè)解的概率;
(Ⅱ)若方程組每個(gè)解對(duì)應(yīng)平面直角坐標(biāo)系中點(diǎn)P(x,y),求點(diǎn)P落在第四象限的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.以下四個(gè)命題正確的個(gè)數(shù)( 。
①用反證法證明數(shù)學(xué)命題時(shí)首先應(yīng)該做出與命題結(jié)論相矛盾的假設(shè).否定“自然數(shù)a,b,c中恰有一個(gè)奇數(shù)”時(shí)正確的反設(shè)為“自然數(shù)a,b,c中至少有兩個(gè)奇數(shù)或都是偶數(shù)”;
②在復(fù)平面內(nèi),表示兩個(gè)共軛復(fù)數(shù)的點(diǎn)關(guān)于實(shí)軸對(duì)稱;
③在回歸直線方程$\stackrel{∧}{y}$=-0.3x+10中,當(dāng)變量x每增加一個(gè)單位時(shí),變量$\stackrel{∧}{y}$平均增加0.3個(gè)單位;
④拋物線y=x2過(guò)點(diǎn)($\frac{3}{2}$,2)的切線方程為2x-y-1=0.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知($\root{3}{x}$-$\frac{2}{x}$)n的展開(kāi)式中,第三項(xiàng)的系數(shù)為144.
(Ⅰ)求該展開(kāi)式中所有偶數(shù)項(xiàng)的二項(xiàng)式系數(shù)之和;
(Ⅱ)求該展開(kāi)式的所有有理項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列各式正確的是( 。
A.|$\overrightarrow{a}$•$\overrightarrow$|=|$\overrightarrow{a}$||$\overrightarrow$|B.($\overrightarrow{a}$•$\overrightarrow$)2=$\overrightarrow{{a}^{2}}$•$\overrightarrow{^{2}}$C.若$\overrightarrow{a}$⊥($\overrightarrow$-$\overrightarrow{c}$)則$\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow{a}$•$\overrightarrow{c}$D.若$\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow{a}$•$\overrightarrow{c}$則$\overrightarrow$=$\overrightarrow{c}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知數(shù)列{an}的首項(xiàng)a1=4,前n項(xiàng)和為Sn,且Sn+1-3Sn-2n-4=0(n∈N+
(1)證明數(shù)列{an+1}為等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)函數(shù)f(x)=anx+an-1x2+…+a1xn,f′(x)是函數(shù)f(x)的導(dǎo)函數(shù),求f′(1).

查看答案和解析>>

同步練習(xí)冊(cè)答案