8.在△ABC中,已知|$\overrightarrow{AB}$|=|$\overrightarrow{AC}$|=4且$\overrightarrow{AB}$•$\overrightarrow{AC}$=8,則該三角形是( 。
A.等邊三角形B.等腰直角三角形C.等腰三角形D.不能判斷形狀

分析 運(yùn)用向量的數(shù)量積的定義可得$\overrightarrow{AB}$•$\overrightarrow{AC}$=|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|•cosA,解方程可得A=$\frac{π}{3}$,即可判斷三角形的形狀.

解答 解:由|$\overrightarrow{AB}$|=|$\overrightarrow{AC}$|=4且$\overrightarrow{AB}$•$\overrightarrow{AC}$=8,
可得$\overrightarrow{AB}$•$\overrightarrow{AC}$=|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|•cosA=4•4•cosA=8,
即cosA=$\frac{1}{2}$,
由0<A<π,可得A=$\frac{π}{3}$,
則△ABC為等邊三角形.
故選:A.

點(diǎn)評(píng) 本題考查三角形的形狀的判斷,主要考查向量數(shù)量積的定義,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知x與y 之間的一組數(shù)據(jù):
 x  0  1  2  3
 y  1  3  5  7
則y與x的線性回歸方程y=2x+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.在復(fù)平面內(nèi),O是原點(diǎn),向量$\overrightarrow{OA}$對(duì)應(yīng)的復(fù)數(shù)是2+i,點(diǎn)A關(guān)于虛軸的對(duì)稱點(diǎn)為B,則向量$\overrightarrow{OB}$對(duì)應(yīng)的復(fù)數(shù)是( 。
A.1+2iB.-2+iC.2-iD.-2-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.將函數(shù)f(x)=cos(x+φ)的圖象上每點(diǎn)的橫坐標(biāo)縮短為原來(lái)的$\frac{1}{2}$倍(縱坐標(biāo)不變),再將所得的圖象向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度后得到的圖象關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,則下列直線中是函數(shù)f(x)圖象的對(duì)稱軸的是( 。
A.x=-$\frac{π}{6}$B.x=$\frac{π}{3}$C.x=-$\frac{5π}{12}$D.x=$\frac{π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.一個(gè)袋子中裝有三個(gè)編號(hào)分別為1,2,3的紅球和三個(gè)編號(hào)分別為1,2,3的白球,三個(gè)紅球按其編號(hào)分別記為a1,a2,a3,三個(gè)白球按其編號(hào)分別記為b1,b2,b3,袋中的6個(gè)球除顏色和編號(hào)外沒(méi)有任何差異,現(xiàn)從袋中一次隨機(jī)地取出兩個(gè)球,
(1)列舉所有的基本事件,并寫出其個(gè)數(shù);
(2)規(guī)定取出的紅球按其編號(hào)記分,取出的白球按其編號(hào)的2倍記分,取出的兩個(gè)球的記分之和為一次取球的得分,求一次取球的得分不小于6的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.設(shè)x,m,n,y成等差數(shù)列,x,p,q,y成等比數(shù)列,則$\frac{{{{({m+n})}^2}}}{pq}$的取值范圍是(-∞,0]∪[4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.在平行四邊形ABCD中,點(diǎn)F為線段CD上靠近點(diǎn)D的一個(gè)三等分點(diǎn).若$\overrightarrow{AC}$=$\overrightarrow{a}$,$\overrightarrow{BD}$=$\overrightarrow$,則$\overrightarrow{AF}$=( 。
A.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$B.$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow$C.$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$D.$\frac{1}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.某地建一座橋,兩端的橋墩已建好,這兩墩相距m米,余下的工程只需要建兩端橋墩之間的橋面和橋墩.經(jīng)預(yù)測(cè)一個(gè)橋墩的工程費(fèi)用為256萬(wàn)元,距離為x米的相鄰兩墩之間的橋面工程費(fèi)用為(2+$\sqrt{x}$)x萬(wàn)元.假設(shè)橋墩等距離分布,所有橋墩都視為點(diǎn),且不考慮其他因素,記余下工程的費(fèi)用為y萬(wàn)元.假設(shè)需要新建n個(gè)橋墩.
(1)寫出n關(guān)于x的函數(shù)關(guān)系式;
(2)寫出y關(guān)于x的函數(shù)關(guān)系式;
(3)當(dāng)m=640米時(shí),需新建多少個(gè)橋墩才能使y最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow$|=1.且對(duì)于任意實(shí)數(shù)x,不等式|$\overrightarrow{a}$+x$\overrightarrow$|≥|$\overrightarrow{a}$+$\overrightarrow$|恒成立,設(shè)$\overrightarrow{a}$,$\overrightarrow$的夾角為θ.則sinθ等于( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{1}{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案