6.已知向量$\overrightarrow{a}$=(k,k+1),$\overrightarrow$=(1,-2)且$\overrightarrow{a}$∥$\overrightarrow$,則實(shí)數(shù)k等于$-\frac{1}{3}$.

分析 根據(jù)題意,由向量平行的坐標(biāo)表示公式可得$\overrightarrow{a}$∥$\overrightarrow$,則有(-2)×k=k+1,解可得k的值,即可得答案.

解答 解:根據(jù)題意,向量$\overrightarrow{a}$=(k,k+1),$\overrightarrow$=(1,-2),
若$\overrightarrow{a}$∥$\overrightarrow$,則有(-2)×k=k+1,
解可得k=$-\frac{1}{3}$;
故答案為:$-\frac{1}{3}$.

點(diǎn)評(píng) 本題考查向量平行的坐標(biāo)表示,注意要掌握向量平行的坐標(biāo)表示方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在學(xué)校體育節(jié)中,某班全體40名同學(xué)參加跳繩、踢毽子兩項(xiàng)比賽的人數(shù)統(tǒng)計(jì)如下:
參加跳繩的同學(xué)未參加跳繩的同學(xué)
參加踢毽的同學(xué)94
未參加踢毽的同學(xué)720
(1)從該班隨機(jī)選1名同學(xué),求該同學(xué)至少參加上述一項(xiàng)活動(dòng)的概率;
(2)已知既參加跳繩又參加踢毽的9名同學(xué)中,有男生5名,女生4名,現(xiàn)從這5名男生,4名女生中各隨機(jī)挑選1人,求男同學(xué)甲未被選中且女同學(xué)乙被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=x2+$\frac{2}{x}$+alnx(x>0,a為常數(shù)).
(1)討論函數(shù)g(x)=f(x)-x2的單調(diào)性;
(2)對(duì)任意兩個(gè)不相等的正數(shù)x1、x2,求證:當(dāng)a≤0時(shí),$\frac{{f({x_1})+f({x_2})}}{2}>f({\frac{{{x_1}+{x_2}}}{2}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè){an}是公差不為0的等差數(shù)列,滿足a42+a52=a62+a72,則{an}的前10項(xiàng)和S10=( 。
A.-10B.-5C.0D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=xlnx-mx的圖象與直線y=-1相切.
(Ⅰ)求m的值,并求f(x)的單調(diào)區(qū)間;
(Ⅱ)若g(x)=ax3,設(shè)h(x)=f(x)-g(x),討論函數(shù)h(x)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,過左焦點(diǎn)F且垂直于x軸的弦長為1.
( I)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)點(diǎn)P(m,0)為橢圓C的長軸上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P且斜率為$\frac{1}{2}$的直線l交橢圓C于A,B兩點(diǎn),問:|PA|2+|PB|2是否為定值?若是,求出這個(gè)定值并證明,否則,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$一條漸近線與x軸的夾角為30°,那么雙曲線的離心率為$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.對(duì)于實(shí)數(shù)a,b,定義運(yùn)算“□”:a□b=$\left\{\begin{array}{l}{{a}^{2}-ab,a≤b}\\{^{2}-ab,a>b}\end{array}\right.$設(shè)f(x)=(x-4)□($\frac{7}{4}$x-4),若關(guān)于x的方程|f(x)-m|=1(m∈R)恰有四個(gè)互不相等的實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍是(-1,1)∪(2,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2},}&{x≤1}\\{x+\frac{4}{x}-3,}&{x>1}\end{array}\right.$,則f(x)的值域是(  )
A.[1,+∞)B.[0,+∞)C.(1,+∞)D.[0,1)∪(1,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案