15.對(duì)于實(shí)數(shù)a,b,定義運(yùn)算“□”:a□b=$\left\{\begin{array}{l}{{a}^{2}-ab,a≤b}\\{^{2}-ab,a>b}\end{array}\right.$設(shè)f(x)=(x-4)□($\frac{7}{4}$x-4),若關(guān)于x的方程|f(x)-m|=1(m∈R)恰有四個(gè)互不相等的實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍是(-1,1)∪(2,4).

分析 根據(jù)新定義得出f(x)的解析式,作出f(x)的函數(shù)圖象,則f(x)與y=m±1共有4個(gè)交點(diǎn),根據(jù)圖象列出不等式組解出.

解答 解:解不等式x-4≤$\frac{7}{4}x$-4得x≥0,f(x)=$\left\{\begin{array}{l}{-\frac{3}{4}{x}^{2}+3x,x≥0}\\{\frac{21}{16}{x}^{2}-3x,x<0}\end{array}\right.$,
畫出函數(shù)f(x)的大致圖象如圖所示.

因?yàn)殛P(guān)于x的方程|f(x)-m|=1(m∈R),即f(x)=m±1(m∈R)恰有四個(gè)互不相等的實(shí)數(shù)根,
所以兩直線y=m±1(m∈R)與曲線y=f(x)共有四個(gè)不同的交點(diǎn),
∴$\left\{\begin{array}{l}{m+1>3}\\{0<m-1<3}\end{array}\right.$或$\left\{\begin{array}{l}{1<m+1<3}\\{m-1<0}\end{array}\right.$或$\left\{\begin{array}{l}{m+1=3}\\{m-1=0}\end{array}\right.$,
解得2<m<4或-1<m<1.
故答案為(-1,1)∪(2,4).

點(diǎn)評(píng) 本題考查了函數(shù)零點(diǎn)與函數(shù)圖象的關(guān)系,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,四棱錐P-ABCD中,AD∥BC,AD⊥DC,AD=2BC=2,在側(cè)面PAD中,PA=PD,E為側(cè)棱PC上不同于端點(diǎn)的任意一點(diǎn)且PA⊥DE.
(1)證明:平面PAD⊥平面ABCD;
(2)若PA∥平面BDE,求$\frac{CE}{PE}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知向量$\overrightarrow{a}$=(k,k+1),$\overrightarrow$=(1,-2)且$\overrightarrow{a}$∥$\overrightarrow$,則實(shí)數(shù)k等于$-\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.等腰直角三角形ABC中,∠C=90°,AC=BC=2,點(diǎn)P是△ABC斜邊上任意一點(diǎn),則線段CP的長(zhǎng)度不大于$\sqrt{3}$的概率是(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{2}}}{4}$C.$\frac{1}{2}$D.$\frac{{\sqrt{6}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知三棱錐P-ABC的各頂點(diǎn)都在同一球的面上,且PA⊥平面ABC,若球O的體積為$\frac{20\sqrt{5}π}{3}$(球的體積公式為$\frac{4π}{3}$R3,其中R為球的半徑),AB=2,AC=1,∠BAC=60°,則三棱錐P-ABC的體積為( 。
A.$\frac{\sqrt{3}}{3}$B.$\frac{2\sqrt{3}}{3}$C.$\sqrt{3}$D.$\frac{4\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知命題p:?x∈(1,+∞),x3+16>8x,則命題p的否定為( 。
A.?x∈(1,+∞),x3+16≤8xB.?x∈(1,+∞),x3+16<8x
C.?x∈(1,+∞),x3+16≤8xD.?x∈(1,+∞),x3+16<8x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.閱讀程序框圖,該算法的功能是輸出( 。
A.數(shù)列{2n-1}的前 4項(xiàng)的和B.數(shù)列{2n-1}的第4項(xiàng)
C.數(shù)列{2n}的前5項(xiàng)的和D.數(shù)列?{2n-1}的第5項(xiàng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在平面直角坐標(biāo)系中,已知點(diǎn)A,B分別為x軸、y軸上的點(diǎn),且|AB|=1,若點(diǎn)P(1,$\frac{4}{3}})$),則$|{\overrightarrow{AP}+\overrightarrow{BP}+\overrightarrow{OP}}$|的取值范圍是( 。
A.[5,6]B.[5,7]C.[4,6]D.[6,9]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知A、F分別是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左頂點(diǎn)、右焦點(diǎn),點(diǎn)P為橢圓C上一動(dòng)點(diǎn),當(dāng)PF⊥x軸時(shí),AF=2PF.
(1)求橢圓C的離心率;
(2)若橢圓C存在點(diǎn)Q,使得四邊形AOPQ是平行四邊形(點(diǎn)P在第一象限),求直線AP與OQ的斜率之積;
(3)記圓O:x2+y2=$\frac{ab}{{a}^{2}+^{2}}$為橢圓C的“關(guān)聯(lián)圓”.若b=$\sqrt{3}$,過點(diǎn)P作橢圓C的“關(guān)聯(lián)圓”的兩條切線,切點(diǎn)為M、N,直線MN的橫、縱截距分別為m、n,求證:$\frac{3}{{m}^{2}}$+$\frac{4}{{n}^{2}}$為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案