參加跳繩的同學(xué) | 未參加跳繩的同學(xué) | |
參加踢毽的同學(xué) | 9 | 4 |
未參加踢毽的同學(xué) | 7 | 20 |
分析 (1)由表可知,既參加跳繩又參加踢毽的同學(xué)9人,只參加踢毽的同學(xué)4人,只參加跳繩的同學(xué)7人,由此能求出該同學(xué)至少參加上述一項活動的概率.
(2)設(shè)5名男同學(xué)為甲,1,2,3,4;4名女同學(xué)為乙,5,6,7.由此利用列舉法能求出從這5名男生,4名女生中各隨機(jī)挑選1人,男同學(xué)甲未被選中且女同學(xué)乙被選中的概率.
解答 解:(1)由表可知,既參加跳繩又參加踢毽的同學(xué)9人,只參加踢毽的同學(xué)4人,
只參加跳繩的同學(xué)7人,所以至少參加上述一項活動的同學(xué)有20人.
設(shè)“該同學(xué)至少參加上述一項活動”為事件A,則$P(A)=\frac{20}{40}=\frac{1}{2}$.
(2)設(shè)5名男同學(xué)為甲,1,2,3,4;4名女同學(xué)為乙,5,6,7.
所有可能的結(jié)果有:(甲,乙),(甲,5),(甲,6),(甲,7),
(1,乙),(1,5),(1,6),(1,7),(2,乙),(2,5),
(2,6),(2,7),(3,乙),(3,5),(3,6),(3,7),
(4,乙),(4,5),(4,6),(4,7),共計20種.
記“男同學(xué)甲未被選中且女同學(xué)乙被選中”為事件B,
則B共包含(1,乙),(2,乙),(3,乙),(4,乙),共4個結(jié)果.
∴男同學(xué)甲未被選中且女同學(xué)乙被選中的概率$P(B)=\frac{4}{20}=\frac{1}{5}$.
點(diǎn)評 本題考查概率的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意列舉法的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $-\frac{1}{3}$ | C. | $-\frac{3}{7}$ | D. | $\frac{3}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x0∈R,使得x02-x0+2=0 | |
B. | 命題“?x∈R,x2+x+1>0”的否定是“?x0∈R,x02+x0+1<0” | |
C. | ?θ∈R,函數(shù)f(x)=sin(2x+θ)都不是偶函數(shù) | |
D. | 在△ABC中,“A=B”是“sinA=sinB”的充要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 方程f(x)=0有兩個不相等的整數(shù)根 | B. | 方程f(x)=0沒有整數(shù)根 | ||
C. | 方程f(x)=0至少有一個整數(shù)根 | D. | 方程f(x)=0至多有一個整數(shù)根 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-$\frac{π}{3}$,$\frac{π}{6}$] | B. | [-$\frac{π}{3}$,$\frac{2π}{3}$] | C. | [-$\frac{π}{6}$,$\frac{5π}{6}$] | D. | [$\frac{π}{6}$,$\frac{2π}{3}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com