14.設(shè){an}是公差不為0的等差數(shù)列,滿足a42+a52=a62+a72,則{an}的前10項和S10=( 。
A.-10B.-5C.0D.5

分析 a42+a52=a62+a72,化簡可得:$({a_6}^2-{a_4}^2)+({a_7}^2-{a_5}^2)=0$,可得a5+a6=0,再利用等差數(shù)列通項公式求和公式及其性質(zhì)即可得出.

解答 解:a42+a52=a62+a72,化簡可得:$({a_6}^2-{a_4}^2)+({a_7}^2-{a_5}^2)=0$,
即2d(a6+a4)+2d(a7+a5)=0,d≠0.
∴a6+a4+a7+a5=0,
∵a5+a6=a4+a7,
∴a5+a6=0,
∴S10=$\frac{10({a}_{1}+{a}_{10})}{2}$=5(a5+a6)=0,
故選:C.

點評 本題考查了等差數(shù)列通項公式求和公式及其性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若${(\sqrt{x}-\frac{3}{x})^n}$的展開式中第3項與第4項的二項式系數(shù)相等,則展開式中x的系數(shù)為-30.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,四棱錐P-ABCD中,AD∥BC,AD⊥DC,AD=2BC=2,在側(cè)面PAD中,PA=PD,E為側(cè)棱PC上不同于端點的任意一點且PA⊥DE.
(1)證明:平面PAD⊥平面ABCD;
(2)若PA∥平面BDE,求$\frac{CE}{PE}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.《九章算術(shù)》“勾股”章有一題:“今有二人同立.甲行率七,乙行率三,乙東行,甲南行十步而斜東北與乙會,問甲乙各行幾何?”大意是說:“已知甲、乙二人同時從同一地點出發(fā),甲的速度為7,乙的速度為3,乙一直向東走,甲先向南走10步,后又斜向北偏東方向走了一段后與乙相遇.甲、乙各走了多少步?”請問乙走的步數(shù)是( 。
A.$\frac{9}{2}$B.$\frac{15}{2}$C.$\frac{21}{2}$D.$\frac{49}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.執(zhí)行所給的程序框圖,則輸出的值是( 。
A.$\frac{1}{55}$B.$\frac{1}{58}$C.$\frac{1}{61}$D.$\frac{1}{64}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知P(x,y)為不等式組$\left\{{\begin{array}{l}{x+y≤4}\\{x-y≤0}\\{x-m≥0}\end{array}}\right.$表示的平面區(qū)域M內(nèi)任意一點,若目標函數(shù)z=5x+3y的最大值等于平面區(qū)域M的面積,則m=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知向量$\overrightarrow{a}$=(k,k+1),$\overrightarrow$=(1,-2)且$\overrightarrow{a}$∥$\overrightarrow$,則實數(shù)k等于$-\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.等腰直角三角形ABC中,∠C=90°,AC=BC=2,點P是△ABC斜邊上任意一點,則線段CP的長度不大于$\sqrt{3}$的概率是( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{2}}}{4}$C.$\frac{1}{2}$D.$\frac{{\sqrt{6}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在平面直角坐標系中,已知點A,B分別為x軸、y軸上的點,且|AB|=1,若點P(1,$\frac{4}{3}})$),則$|{\overrightarrow{AP}+\overrightarrow{BP}+\overrightarrow{OP}}$|的取值范圍是(  )
A.[5,6]B.[5,7]C.[4,6]D.[6,9]

查看答案和解析>>

同步練習(xí)冊答案