11.動(dòng)點(diǎn)P在拋物線y=2x2+1上移動(dòng),若P與點(diǎn)Q(0,-1)連線的中點(diǎn)為M,則動(dòng)點(diǎn)M的軌跡方程為(  )
A.y=2x2B.y=4x2C.y=6x2D.y=8x2

分析 先設(shè)PQ中點(diǎn)為(x,y),進(jìn)而根據(jù)中點(diǎn)的定義可求出M點(diǎn)的坐標(biāo),然后代入到曲線方程中得到軌跡方程.

解答 解:設(shè)PQ中點(diǎn)為(x,y),則M(2x,2y+1)在拋物線y=2x2+1上,
即2(2x)2=(2y+1)-1,
∴y=4x2
故選B.

點(diǎn)評 本題主要考查軌跡方程的求法,考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知雙曲線Γ:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的一條漸近線為l,圓C:(x-a)2+y2=8與l交于A,B兩點(diǎn),若△ABC是等腰直角三角形,且$\overrightarrow{OB}=5\overrightarrow{OA}$(其中O為坐標(biāo)原點(diǎn)),則雙曲線Γ的離心率為( 。
A.$\frac{{2\sqrt{13}}}{3}$B.$\frac{{2\sqrt{13}}}{5}$C.$\frac{{\sqrt{13}}}{5}$D.$\frac{{\sqrt{13}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)$f(x)=|{x+\frac{1}{x}}$|(x≠0)
(1)求不等式f(x)<|x-1|的解集;
(2)若對?x∈(-∞,0)∪(0,+∞),不等式f(x)>|x-a|-|1+x|恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)y=ax-1(a>0,a≠1)的圖象恒過定點(diǎn)A,若點(diǎn)在直線mx+ny=1上,則mn的最大值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知三棱錐S-ABC的三條側(cè)棱相等,體積為$\frac{\sqrt{3}}{4}$,AB=BC=$\sqrt{3}$,∠ACB=30°,則三棱錐S-ABC外接球的體積為$\frac{32}{3}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知拋物線C:y2=8x的焦點(diǎn)為F,準(zhǔn)線l與x軸的交點(diǎn)為M,過點(diǎn)M的直線l′與拋物線C的交點(diǎn)為P,Q,延長PF交拋物線C于點(diǎn)A,延長QF交拋物線C于點(diǎn)B,若$\frac{|PF|}{|AF|}$+$\frac{|QF|}{|BF|}$=22,則直線l′的方程為y=±$\frac{\sqrt{6}}{6}$(x+2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.直線l與曲線y=ex相切于點(diǎn)A(0,1),直線l的方程是x-y+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在如圖所示的幾何體中,四邊形CDEF為正方形,四邊形ABCD為等腰梯形,AB∥CD,AB=2BC,∠BAC=30°,AC⊥FB.
(Ⅰ)求證:AC⊥平面FBC;
(Ⅱ)求FC與平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知A,B分別為橢圓C:$\frac{x^2}{4}+\frac{y^2}{2}=1$的左、右頂點(diǎn),P為橢圓C上異于A,B兩點(diǎn)的任意一點(diǎn),直線PA,PB的斜率分別記為k1,k2
(1)求k1k2;
(2)過坐標(biāo)原點(diǎn)O作與直線PA,PB平行的兩條射線分別交橢圓C于點(diǎn)M,N,問:△MON的面積是否為定值?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案