8.如圖是正方體的平面展開圖.關(guān)于這個(gè)正方體,有以下判斷:①EC⊥平面AFN;
②CN∥平面AFB③BM∥DE④平面BDE∥平面NCF,其中正確判斷的序號是(  )
A.①③B.②③C.①②④D.②③④

分析 將展開圖復(fù)原為幾何體,如圖,根據(jù)正方體的幾何性質(zhì),分別四個(gè)命題的真假,容易判斷選項(xiàng)的正誤,求出結(jié)果.

解答 解:把正方體的平面展開圖還原成正方體ABCA-EFMN,
得:①EC⊥AF,EC⊥AN,AF∩AN=A,∴EC⊥平面AFN,故①正確;
②CN∥BE,CN不包含于平面AFB,BE?平面AFB,∴CN∥平面AFB,故②正確;
③BM與ED是異面直線,故③不正確;
④∵BD∥FN,BE∥CN,BD∩BE=B,BD、BE?平面BDE,
∴平面BDE∥平面NCF,故④正確.
故選C.

點(diǎn)評 本題考查異面直線的判定,線面性質(zhì)、平行的判定,面面平行的判定,幾何體的折疊與展開,考查空間想象能力,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={y|y=log2x,x>2},$B=\{x|y=\sqrt{x-1}\}$,則(  )
A.A⊆BB.A∪B=AC.A∩B=∅D.A∩∁RB≠∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{{x^2}-1,x≥0}\\{-2x,x<0}\end{array}}$,則關(guān)于x的方程f[f(x)]+k=0給出下列四個(gè)命題:
①存在實(shí)數(shù)k,使得方程恰有1個(gè)實(shí)根;  
②存在實(shí)數(shù)k,使得方程恰有2個(gè)不相等的實(shí)根;
③存在實(shí)數(shù)k,使得方程恰有3個(gè)不相等的實(shí)根;
④存在實(shí)數(shù)k,使得方程恰有4個(gè)不相等的實(shí)根.
其中正確命題的序號是①②③(把所有滿足要求的命題序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.隨著手機(jī)的發(fā)展,“微信”越來越成為人們交流的一種方式.某機(jī)構(gòu)對“使用微信交流”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽取了50人,他們年齡的頻數(shù)分布及對“使用微信交流”贊成人數(shù)如表.
年齡(單位:歲)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
頻數(shù)510151055
贊成人數(shù)51012721
(1)若以“年齡45歲為分界點(diǎn)”,由以上統(tǒng)計(jì)數(shù)據(jù)完成下面2×2列聯(lián)表,并判斷有多大的把握認(rèn)為“使用微信交流”的態(tài)度與人的年齡有關(guān)?
年齡低于45歲的人數(shù)年齡不低于45歲的人數(shù)合計(jì)
不贊成31013
贊成271037
合計(jì)302050
(2)若從年齡在[55,65)的被調(diào)查人中隨機(jī)選取2人進(jìn)行追蹤調(diào)查,求2人中至少有1人贊成“使用微信交流”的概率.
下面臨界值表供參考:
P(X2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.證明:若函數(shù)f(x)在區(qū)間[a,b]上是增函數(shù),那么方程f(x)=0在區(qū)間[a,b]上至多只有一個(gè)實(shí)數(shù)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.經(jīng)過點(diǎn)M(m,3)和N(1,m)的直線l與斜率為-1的直線互相垂直,則m的值是( 。
A.4B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知數(shù)列{an}為等比數(shù)列,若a2•a3=2a1,且a4與2a7的等差中項(xiàng)為$\frac{5}{4}$,則a1=(  )
A.8B.16C.32D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知P(x0,y0)是拋物線y2=2px(p>0)上的一點(diǎn),過P點(diǎn)的切線方程的斜率可通過如下方式求得,在y2=2px兩邊同時(shí)對x求導(dǎo),得2yy'=2p,則$y'=\frac{p}{y}$,所以過點(diǎn)P的切線的斜率$k=\frac{p}{y_0}$,試用上述方法求出雙曲線${x^2}-\frac{y^2}{2}=1$在$P({\sqrt{2},\sqrt{2}})$處的切線方程為( 。
A.2x-y=0B.$2x-y-\sqrt{2}=0$C.$2x-3y-\sqrt{2}=0$D.$x-y-\sqrt{2}=0$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.計(jì)算下列定積分.
(1)$\int_0^1{(2x+3)dx}$;
(2)$\int_e^{e^3}{\frac{1}{x}}dx$.

查看答案和解析>>

同步練習(xí)冊答案