7.已知變量x,y線性負(fù)相關(guān),且由觀測數(shù)據(jù)算得樣本平均數(shù)$\overline x=3$,$\overline y=3.5$,則由該觀測數(shù)據(jù)算得的線性回歸方程可能是(  )
A.y=0.4x+2.4B.y=2x+2.4C.y=-2x+9.5D.y=-0.3x+4.4

分析 變量x與y負(fù)相關(guān),可以排除A,B,樣本平均數(shù)代入可求這組樣本數(shù)據(jù)的回歸直線方程.

解答 解:∵變量x與y負(fù)相關(guān),
∴可以排除A,B;
樣本平均數(shù)$\overline x=3$,$\overline y=3.5$,代入C符合,D不符合,
故選:C.

點(diǎn)評(píng) 本題考查數(shù)據(jù)的回歸直線方程,利用回歸直線方程恒過樣本中心點(diǎn)是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知拋物線:y2=4x,直線l:x-y+4=0,拋物線上有一動(dòng)點(diǎn)P到y(tǒng)軸的距離為d1,P到直線l的距離為d2,則d1+d2的最小值為(  )
A.$\frac{5\sqrt{2}}{2}$B.$\frac{5\sqrt{2}}{2}$+1C.$\frac{5\sqrt{2}}{2}$-2D.$\frac{5\sqrt{2}}{2}$-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知直線$l:mx+y+3m-\sqrt{3}=0$與圓x2+y2=12交于A,B兩點(diǎn),若$|{AB}|=2\sqrt{3}$,則直線l在x軸上的截距為-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若sin(α-β)cosβ+cos(α-β)sinβ=-m,且α為第四象限,則cosα的值為( 。
A.$\sqrt{1-{m^2}}$B.$-\sqrt{1-{m^2}}$C.$\sqrt{{m^2}-1}$D.$-\sqrt{{m^2}-1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.(1)已知函數(shù)f(x)=|x-1|+|x-3|,g(a)=4a-a2,使不等式f(x)>g(a)對(duì)?a∈R恒成立,求實(shí)數(shù)x的取值范圍;
(2)已知a,b,c∈R+,a+b+c=1,求$\sqrt{a}$+$\sqrt{2b}$+$\sqrt{3c}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)y=(x-x3)•2|x|在區(qū)間[-3,3]上的圖象大致是( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=lnx-2ax,a∈R.
(1)若函數(shù)y=f(x)存在與直線2x-y=0平行的切線,求實(shí)數(shù)a的取值范圍;
(2)已知a>1設(shè)g(x)=f(x)+$\frac{1}{2}{x^2}$,若g(x)有極大值點(diǎn)x1,求證:x1lnx1-ax12+1>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知x,y∈(0,+∞),且滿足$\frac{1}{x}+\frac{1}{2y}=1$,那么x+4y的最小值為( 。
A.$3-\sqrt{2}$B.$3+2\sqrt{2}$C.$3+\sqrt{2}$D.$4\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在平面直角坐標(biāo)系中,已知頂點(diǎn)$A(0,-\sqrt{2})$、$B(0,\sqrt{2})$,直線PA與直線PB的斜率之積為-2,則動(dòng)點(diǎn)P的軌跡方程為( 。
A.$\frac{y^2}{2}+{x^2}$=1B.$\frac{y^2}{2}+{x^2}$=1(x≠0)C.$\frac{y^2}{2}-{x^2}$=1D.$\frac{y^2}{2}+{x^2}$=1(y≠0)

查看答案和解析>>

同步練習(xí)冊(cè)答案