15.若sin(α-β)cosβ+cos(α-β)sinβ=-m,且α為第四象限,則cosα的值為( 。
A.$\sqrt{1-{m^2}}$B.$-\sqrt{1-{m^2}}$C.$\sqrt{{m^2}-1}$D.$-\sqrt{{m^2}-1}$

分析 由兩角和與差的三角函數(shù)公式可得sinβ=-m,結(jié)合角β的象限,再由同角三角函數(shù)的基本關(guān)系可得.

解答 解:∵sin(α-β)cosβ+cos(α-β)sinβ=-m,
∴sin[(α-β)+β]=sinα=-m,
又α為第四象限角,
∴cosα>0,
由同角三角函數(shù)的基本關(guān)系可得:cosα=$\sqrt{1-si{n}^{2}α}$=$\sqrt{1-{m}^{2}}$.
故選:A.

點(diǎn)評(píng) 本題考查兩角和與差的三角函數(shù)公式,涉及同角三角函數(shù)的基本關(guān)系,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.復(fù)數(shù)z=$\frac{1-i}{2i}$,其中i是虛數(shù)單位,則復(fù)數(shù)z的虛部是$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=alnx-(a+1)x-$\frac{1}{x}$
(1)當(dāng)a<-1時(shí),討論f(x)的單調(diào)性
(2)當(dāng)a=1時(shí),若g(x)=-x-$\frac{1}{x}$-1,證明:當(dāng)x>1時(shí),g(x)的圖象恒在f(x)的圖象上方
(3)證明:$\frac{ln2}{{2}^{2}}$+$\frac{ln3}{{3}^{2}}$+…+$\frac{lnn}{{n}^{2}}$<$\frac{2{n}^{2}-n-1}{4(n+1)}$(n∈N*,n≥2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在如圖所示的幾何體中,AF⊥平面ABCD,EF∥AB,四邊形ABCD為矩形,AD=2,AB=AF=2EF=1,P是棱DF的中點(diǎn).
(1)求證:BF∥平面ACP;
(2)求異面直線CE與AP所成角的余弦值;
(3)求二面角D-AP-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)t∈R,已知p:函數(shù)f(x)=x2-tx+1有零點(diǎn),q:?x∈R,|x-1|≥2-t2
(Ⅰ)若q為真命題,求t的取值范圍;
(Ⅱ)若p∨q為假命題,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosα}\\{y=\sqrt{2}sinα}\end{array}\right.$(α為參數(shù)),以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρsin(θ+$\frac{π}{4}$)=3$\sqrt{2}$
(1)求曲線C1的普通方程與曲線C2的直角坐標(biāo)方程;
(2)設(shè)P1,P2分別為曲線C1、C2上的兩個(gè)動(dòng)點(diǎn),求線段P1P2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知變量x,y線性負(fù)相關(guān),且由觀測(cè)數(shù)據(jù)算得樣本平均數(shù)$\overline x=3$,$\overline y=3.5$,則由該觀測(cè)數(shù)據(jù)算得的線性回歸方程可能是(  )
A.y=0.4x+2.4B.y=2x+2.4C.y=-2x+9.5D.y=-0.3x+4.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的漸近線與圓x2+y2-4y+3=0相切,則該雙曲線C的離心率為( 。
A.$2\sqrt{3}$B.2C.$\sqrt{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.S=$\frac{1}{1×2}+\frac{1}{2×3}+\frac{1}{3×4}+…+\frac{1}{20×21}$=$\frac{20}{21}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案