10.求下列函數(shù)的導(dǎo)數(shù)
(1)y=3x(x2+2)
(2)y=$\frac{1}{{x}^{4}}$
(3)y=$\root{5}{{x}^{3}}$
(4)y=$\frac{cosx}{x}$  
(5)y=(2+x32

分析 根據(jù)導(dǎo)數(shù)的運(yùn)算法則進(jìn)行計(jì)算即可.

解答 解:(1)∵y=3x(x2+2)=3x3+6x,
∴y′=9x2+6;…2分
(2)y′=(x-4)′=-4•x-4-1=-4•x-5=-$\frac{4}{x5}$;…2分
(3)y′=($\root{5}{{x}^{3}}$)′=(${x}^{\frac{3}{5}}$)′=$\frac{3}{5}$${x}^{-\frac{2}{5}}$=$\frac{3}{5\root{5}{{x}^{2}}}$;…2分
(4)y′=($\frac{cosx}{x}$)′=$\frac{(cosx)′x-cosx•(x)′}{{x}^{2}}$=$\frac{-xsinx-cosx}{{x}^{2}}$;…2分
(5)∵y=(2+x32=4+4x3+x6,
∴y′=6x5+12x2;…2分

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的運(yùn)算與應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.在相距4千米的A,B兩出測(cè)量目標(biāo)C,若∠CAB=75°,∠CBA=60°,求A,C之間的距離是2$\sqrt{6}$千米.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知函數(shù)$f(x)=\left\{\begin{array}{l}2-x,x<1\\{x^2}-x,x≥1\end{array}\right.$,則f(f(0))的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若函數(shù)f(x)=2|x-a|(a∈R)滿足f(1+x)=f(1-x),且f(x)在[m,+∞)單調(diào)遞增,則實(shí)數(shù)m的取值范圍是m≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列四個(gè)結(jié)論正確的是( 。
A.若n組數(shù)據(jù)(x1,y1),…(xn,yn)的散點(diǎn)都在y=-2x+1上,則相關(guān)系數(shù)r=-1
B.回歸直線就是散點(diǎn)圖中經(jīng)過(guò)樣本數(shù)據(jù)點(diǎn)最多的那條直線
C.已知點(diǎn)A(-1,0),B(1,0),若|PA|+|PB|=2,則動(dòng)點(diǎn)P的軌跡為橢圓
D.設(shè)回歸直線方程為$\widehat{y}$=2-2.5x,當(dāng)變量x增加一個(gè)單位時(shí),$\widehat{y}$平均增加2.5個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.拋物線x2=2py的準(zhǔn)線方程為y=1,則焦點(diǎn)坐標(biāo)是x2=-4y.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若函數(shù)y=$\sqrt{3}{sin^2}x+sinx•cosx-\frac{{\sqrt{3}}}{2}$的圖象關(guān)于直線x=φ對(duì)稱,則x=φ可以為( 。
A.$\frac{5π}{12}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.某學(xué)校從高一學(xué)生500人,高二學(xué)生400人,高三學(xué)生300人,用分層抽樣的方法從中抽取一個(gè)容量為60的樣本,則應(yīng)抽取高一學(xué)生的人數(shù)為25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.給定命題p:x>4,q:|x-1|>2,則¬p是¬q的必要不充分條件(備注:從充要,充分不必要,必要不充分中選擇其一作答)

查看答案和解析>>

同步練習(xí)冊(cè)答案