給出四個命題
(1)函數(shù)是定義域到值域的對應(yīng)關(guān)系.
(2)函數(shù)f(x)=
x-4
+
3-x

(3)f(x)=5,因為這個函數(shù)的值不隨x的變化而變化.所以f(t2+1)=5.
(4)y=2x(x∈N)的圖象是一條直線.
其中正確的是
 
考點:函數(shù)的概念及其構(gòu)成要素
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)的定義和性質(zhì)分別進(jìn)行判斷即可.
解答: 解:(1)根據(jù)函數(shù)的三要素可知,函數(shù)是定義域到值域的對應(yīng)關(guān)系.正確.
(2)要使函數(shù)有意義,則
x-4≥0
3-x≥0
,即
x≥4
x≤3
,此時無解,即定義域為空集,不滿足函數(shù)的定義,故f(x)=
x-4
+
3-x
為函數(shù),錯誤.
(3)∵f(x)=5為常數(shù)函數(shù),故這個函數(shù)的值不隨x的變化而變化.所以f(t2+1)=5.正確.
(4)y=2x(x∈N)的圖象不連續(xù),不是一條直線.故錯誤,
故答案為:(1)(3)
點評:本題主要考查函數(shù)定義的理解和應(yīng)用,根據(jù)函數(shù)的三要素以及定義是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a=2,A=45°,若此三角形有兩解,則b的范圍為( 。
A、2<b<2
2
B、b>2
C、b<2
D、
1
2
<b<
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(lgx)=x,則f(3)=( 。
A、103
B、3
C、lg3
D、310

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下幾個結(jié)論,其中正確結(jié)論的個數(shù)為( 。
(1)將一組數(shù)據(jù)中的每個數(shù)據(jù)都減去同一個數(shù)后,平均數(shù)與標(biāo)準(zhǔn)差均沒有變化;
(2)在線性回歸分析中,相關(guān)系數(shù)r越小,表明兩個變量相關(guān)越弱;
(3)直線l垂直于平面α的充要條件是l垂直于平面α內(nèi)的無數(shù)條直線;
(4)某單位有職工750人,其中青年職工350人,中年職工250人,老年職工150人,為了了解該單位職工的健康情況,用分層抽樣的方法從中抽取樣本,若樣本中的青年職工為7人,剛樣本容量為15.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=-|x|的單調(diào)遞減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四組中的函數(shù)f(x)與g(x),是同一函數(shù)的是( 。
A、f(x)=ln(1-x)+ln(1+x),g(x)=ln(1-x2
B、f(x)=lgx2,g(x)=2lgx
C、f(x)=
x+1
x-1
,g(x)=
x2-1
D、f(x)=
x2-1
x-1
,g(x)=x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三國時期趙爽在《勾股方圓圖注》中對勾股定理的證明可用現(xiàn)代數(shù)學(xué)表述為如圖所示,我們教材中利用該圖作為“( 。钡膸缀谓忉專
A、如果a>b,b>c,那么a>c
B、如果a>b>0,那么a2>b2
C、對任意實數(shù)a和b,有a2+b2≥2ab,當(dāng)且僅當(dāng)a=b時等號成立
D、如果a>b,c>0那么ac>bc

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在(x+y)n的展開式中,若第8項系數(shù)最大,則n的值可能等于( 。
A、14,15
B、15,16
C、16,17
D、14,15,16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,以等腰直角三角形斜邊BC上的高AD為折痕,把△ABD和△ACD折成互相垂直的兩個平面后,則下列四個結(jié)論中錯誤的是( 。
A、BD⊥AC
B、△ABC是等邊三角形
C、平面ADC⊥平面ABC
D、二面角A-BC-D的正切值為
2

查看答案和解析>>

同步練習(xí)冊答案