【題目】已知函數(shù)的圖象過點(diǎn),且在點(diǎn)處的切線方程.

1求函數(shù)的解析式;

2求函數(shù)的圖象有三個(gè)交點(diǎn),求的取值范圍.

【答案】12.

【解析】

試題分析:1代入函數(shù)解析式可得的值.將代入直線可得的值.再由切線方程可知切線斜率為,由導(dǎo)數(shù)的幾何意義可知,聯(lián)立方程組可得的值;2可將問題轉(zhuǎn)化為有三個(gè)不等的實(shí)根問題,再通過參變量分離轉(zhuǎn)化為圖象有三個(gè)交點(diǎn).然后對求導(dǎo)判單調(diào)性畫出圖象,數(shù)形結(jié)合分析可得出的范圍.

試題解析:解:

1的圖象經(jīng)過點(diǎn),知.

所以,則

由在處的切線方程是

,,所以,即,解得,

故所求的解析式是.

2因?yàn)楹瘮?shù)的圖象有三個(gè)交點(diǎn)有三個(gè)根,

有三個(gè)根.

,則的圖象與圖象有三個(gè)交點(diǎn).

1

2

+

0

-

0

+

極大值

極小值

的極大值為,的極小值為2,因此

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a (1,1,0),b(1,0,2),且kab2ab垂直,則k的值為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)a=1時(shí),求函數(shù)fx)在[1,e]上的最小值和最大值;

2)當(dāng)a≤0時(shí),討論函數(shù)fx)的單調(diào)性;

3)是否存在實(shí)數(shù)a,對任意的x1,x20,+∞,x1≠x2,都有恒成立.若存在,求出a的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)上不具有單調(diào)性,求實(shí)數(shù)的取值范圍;

2)若.

)求實(shí)數(shù)的值;

)設(shè),,當(dāng)時(shí),試比較,,的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,直線的參數(shù)方程為為參數(shù),在極坐標(biāo)系與直角坐標(biāo)系取相同的長度單位,且以原點(diǎn)為極點(diǎn),以軸正半軸為極軸中,圓的方程為.

1求圓的直角坐標(biāo)方程;

2設(shè)圓與直線交于點(diǎn),若點(diǎn)的直角坐標(biāo)為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)設(shè),求的單調(diào)區(qū)間;

2)若處取得極大值,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等差數(shù)列{an}的前n項(xiàng)和為Sn.已知a1=10,a2為整數(shù)且SnS4.

1求{an}的通項(xiàng)公式;

2設(shè)bn求數(shù)列{bn}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圖為一簡單組合體,其底面ABCD為正方形,平面,,且=2 .

1答題指定的方框內(nèi)已給出了該幾何體的俯視圖,請?jiān)诜娇騼?nèi)畫出該幾何體的正視圖和側(cè)視圖;

2求證:平面.

3求四棱錐B-CEPD的體積;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校對任課教師年齡狀況和接受教育程度(學(xué)歷)調(diào),部分結(jié)果(人數(shù)分布)如表:

學(xué)歷

35歲以下

35~50歲

50歲以上

本科

80

30

20

研究生

x

20

y

(1)用分層抽樣的方法在35~50歲年齡段的教師中抽取一個(gè)容量為5的樣本,將該樣本看成一個(gè)總體,從中任取2人,求至少有1人的學(xué)歷為研究生的概率;

(2)若按年齡狀況用分層抽樣的方法抽取N個(gè)人,其中35歲以下48人,50歲以上10人再從這N個(gè)人中隨機(jī)抽取出1人,此人的年齡為50歲以上的概率為求x、y的值.

查看答案和解析>>

同步練習(xí)冊答案