5.在銳角△ABC中,A,B,C所對邊分別為a,b,c,且b2-a2=ac,則$\frac{1}{tanA}$-$\frac{1}{tanB}$的取值范圍為( 。
A.(1,+∞)B.(1,$\frac{2}{3}$$\sqrt{3}$)C.(1,$\sqrt{3}$)D.($\sqrt{2}$,$\frac{2}{3}$$\sqrt{6}$)

分析 根據(jù)正弦定理化簡已知式子,由二倍角的余弦公式變形、和差化積公式和誘導(dǎo)公式化簡后,由內(nèi)角的范圍和正弦函數(shù)的性質(zhì)求出A與B關(guān)系,由銳角三角形的條件求出B的范圍,利用商得關(guān)系、兩角差的正弦公式化簡所求的式子,由正弦函數(shù)的性質(zhì)求出所求式子的取值范圍.

解答 解:∵b2-a2=ac,
∴由正弦定理得,sin2B-sin2A=sinAsinC,$\frac{1-cos2B}{2}-\frac{1-cos2A}{2}$=sinAsinC,可得:$\frac{cos2A-cos2B}{2}$=sinAsinC,
由和差化積公式得cos2A-cos2B=-2sin(A+B)sin(A-B),代入上式得,-sin(A+B)sin(A-B)=sinAsinC,
∵sin(A+B)=sinC≠0,
∴-sin(A-B)=sinA,即sin(B-A)=sinA,
在△ABC中,B-A=A,得B=2A,則C=π-3A,
∵△ABC為銳角三角形,
∴$\left\{\begin{array}{l}{0<2A<\frac{π}{2}}\\{0<π-3A<\frac{π}{2}}\end{array}\right.$,
解得$\frac{π}{6}$$<A<\frac{π}{4}$,則$\frac{π}{3}$<B<$\frac{π}{2}$,
∴$\frac{1}{tanA}$-$\frac{1}{tanB}$=$\frac{cosA}{sinA}-\frac{cosB}{sinB}=\frac{cosAsinB-sinAcosB}{sinAsinB}$=$\frac{sin(B-A)}{sinAsinB}$=$\frac{1}{sinB}$,
由$\frac{π}{3}$<B<$\frac{π}{2}$,得,sinB∈($\frac{\sqrt{3}}{2}$,1),則$\frac{1}{sinB}$∈(1,$\frac{2\sqrt{3}}{3}$),
∴$\frac{1}{tanA}$-$\frac{1}{tanB}$取值范圍是(1,$\frac{2\sqrt{3}}{3}$),
故選:B.

點(diǎn)評 本題是綜合題,考查了正弦定理,三角恒等變換中公式,以及正弦函數(shù)的性質(zhì),涉及知識點(diǎn)多、公式多,綜合性強(qiáng),考查化簡、變形能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.從高二抽出50名學(xué)生參加數(shù)學(xué)競賽,由成績得到如圖的頻率分布直方圖.

試?yán)妙l率分布直方圖(圖1),求(精確到小數(shù)點(diǎn)后一位):
(1)估算這50名學(xué)生成績的眾數(shù);
(2)在上述統(tǒng)計(jì)數(shù)據(jù)的分析中有一項(xiàng)計(jì)算見算法流程圖(圖2),求輸出S的值. (注:mi,fi分別是第i組分?jǐn)?shù)的組中值和頻率).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.Sn是等差數(shù)列{an}的前n項(xiàng)和,若a3+a6+a9=60,則S11=( 。
A.220B.110C.55D.50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.6名志愿者選4人去“”鳥巢”和“水立方”實(shí)地培訓(xùn),每處2人,其中乙不能去“水立方”,則選派方法有( 。
A.60B.70C.80D.90

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)定義域?yàn)镽的函數(shù)f(x)=$\left\{\begin{array}{l}{|lgx|,x>0}\\{-{x}^{2}-2x,x≤0}\end{array}\right.$,則關(guān)于x的函數(shù)y=f(x)-1的零點(diǎn)的個數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知實(shí)數(shù)x、y滿足約束條件$\left\{\begin{array}{l}{x≥2}\\{y≥2}\\{x+y≤6}\end{array}\right.$
(1)畫出x、y所滿足的平面區(qū)域;
(2)若z=x-y,求z的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知某扇形的半徑為10,面積為$\frac{50π}{3}$,那么該扇形的圓心角為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在△ABC中,AB=1,AC=3,B=60°,則cosC=( 。
A.-$\frac{5}{6}$B.$\frac{5}{6}$C.-$\frac{\sqrt{33}}{6}$D.$\frac{\sqrt{33}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=log2(x2-2x+1),g(x)=$\left\{\begin{array}{l}x+b,x≤0\\{a^x}-4,x>0\end{array}$,(其中a>0)
(1)求函數(shù)f(x)的零點(diǎn);
(2)若函數(shù)f(x)與函數(shù)g(x)的零點(diǎn)相同,求函數(shù)g(x)的值域.

查看答案和解析>>

同步練習(xí)冊答案