【題目】某射手每次射擊擊中目標的概率是,且各次射擊的結果互不影響.

(Ⅰ)假設這名射手射擊次,求有次連續(xù)擊中目標,另外次未擊中目標的概率;

(Ⅱ)假設這名射手射擊次,記隨機變量為射手擊中目標的次數(shù),求的分布列及數(shù)學期望.

【答案】(Ⅰ);(Ⅱ)分布列見解析,.

【解析】

(Ⅰ)這名射手次射擊中次連續(xù)擊中,則連續(xù)次擊中目標有三種情況:分別是前三次、中間三次、最后三次,依次計算每種情況發(fā)生的概率,求和即可得解;

(Ⅱ)由題知,每次射擊擊中目標的概率是,且各次射擊的結果互不影響,則,利用二項分布的概率公式列出分布列并求出期望即可.

解:(Ⅰ)設i次射擊擊中目標為事件;射手在5次射擊中, 3次連續(xù)擊中目標,另外2次未擊中目標為事件A,則

;

(Ⅱ)為射手在5次射擊中擊中目標的次數(shù),則, .

0

1

2

3

4

5

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】檳榔原產于馬來西亞,中國主要分布在云南、海南及臺灣等熱帶地區(qū),在亞洲熱帶地區(qū)廣泛栽培.檳榔是重要的中藥材,在南方一些少數(shù)民族還有將果實作為一種咀嚼嗜好品,但其被世界衛(wèi)生組織國際癌癥研究機構列為致癌物清單Ⅰ類致癌物.云南某民族中學為了解兩個少數(shù)民族班學生咀嚼檳榔的情況,分別從這兩個班中隨機抽取5名同學進行調查,將他們平均每周咀嚼檳榔的顆數(shù)作為樣本繪制成莖葉圖如圖所示(圖中的莖表示十位數(shù)字,葉表示個位數(shù)字).

(1)從班的樣本數(shù)據(jù)中隨機抽取一個不超過19的數(shù)據(jù)記為,從班的樣本數(shù)據(jù)中隨機抽取一個不超過21的數(shù)據(jù)記為,求的概率;

(2)從所有咀嚼檳榔顆數(shù)在20顆以上(包含20顆)的同學中隨機抽取3人,求被抽到班同學人數(shù)的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直四棱柱中,

1)求證:平面;

2)現(xiàn)將與四棱柱形狀和大小完全相同的兩個四棱柱拼成一個新的四棱柱,規(guī)定:若拼成的新四棱柱形狀和大小完全相同,則視為同一種拼接方案,問共有幾種不同的拼接方案?在這些拼接成的新四棱柱中,記其中最小的表面積為,寫出的解析式;(直接寫出答案,不必說明理由)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中平面平面.

(Ⅰ)證明:;

(Ⅱ)若點E中點,,,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】蘋果可按果徑(最大橫切面直徑,單位:.)分為五個等級:時為1級,時為2級,時為3級,時為4級,時為5級.不同果徑的蘋果,按照不同外觀指標又分為特級果、一級果、二級果.某果園采摘蘋果10000個,果徑均在內,從中隨機抽取2000個蘋果進行統(tǒng)計分析,得到如圖1所示的頻率分布直方圖,圖2為抽取的樣本中果徑在80以上的蘋果的等級分布統(tǒng)計圖.

(1)假設服從正態(tài)分布,其中的近似值為果徑的樣本平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點值代替),,試估計采摘的10000個蘋果中,果徑位于區(qū)間的蘋果個數(shù);

(2)已知該果園今年共收獲果徑在80以上的蘋果,且售價為特級果12元,一級果10元,二級果9元.設該果園售出這蘋果的收入為,以頻率估計概率,求的數(shù)學期望.

附:若隨機變量服從正態(tài)分布,則

,,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知.

(1)若,求的取值范圍;

(2)若的圖像與軸圍成的封閉圖形面積為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,A為圓O1上任意一點,點D在線段上.,已知,

(1)求點D的軌跡方程H

(2)若直線與方程H所表示的圖像交于E,F兩點,是橢圓上任意一點.若OG平分弦EF,且,,試判斷四邊形OEGF形狀并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設拋物線Γ的方程為y24x,點P的坐標為(11).

1)過點P,斜率為﹣1的直線l交拋物線ΓU,V兩點,求線段UV的長;

2)設Q是拋物線Γ上的動點,R是線段PQ上的一點,滿足2,求動點R的軌跡方程;

3)設AB,CD是拋物線Γ的兩條經過點P的動弦,滿足ABCD.點M,N分別是弦ABCD的中點,是否存在一個定點T,使得M,N,T三點總是共線?若存在,求出點T的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(Ⅰ)求函數(shù)的極值;

(Ⅱ)若實數(shù)為整數(shù),且對任意的時,都有恒成立,求實數(shù)的最小值.

查看答案和解析>>

同步練習冊答案