已知二次函數(shù)交于兩點(diǎn)且,奇函數(shù),當(dāng)時(shí),都在取到最小值.
(1)求的解析式;
(2)若圖象恰有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)的取值范圍.

(1);(2)

解析試題分析:(1)由已知是奇函數(shù),故,從而得,所以,又當(dāng)時(shí),取到最小值,由均值不等式等號(hào)成立的條件可得,即.再由已知及弦長公式,得,解方程組便得的值,從而得函數(shù)的解析式;(2)由已知,,即有兩個(gè)不等的實(shí)根,將問題轉(zhuǎn)化為方程有兩個(gè)不等的實(shí)根,即一元二次方程根的分布問題,列不等式組解決問題.
試題解析:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/77/a/y6fx41.png" style="vertical-align:middle;" />是奇函數(shù),由,所以,由于時(shí),有最小值,所以,則,當(dāng)且僅當(dāng):取到最小值,所以,即
設(shè),,則.由得:,所以:,解得:,所以        6分
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/36/a/agrfw.png" style="vertical-align:middle;" />與,即有兩個(gè)不等的實(shí)根,也即方程有兩個(gè)不等的實(shí)根.
當(dāng)時(shí),有,解得;當(dāng)時(shí),有,無解.
綜上所述,.                                13分
考點(diǎn):1.函數(shù)的最值;2.函數(shù)的奇偶性;3.弦長公式;4.一元二次方程根的分布問題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知實(shí)數(shù),函數(shù).
(1)當(dāng)時(shí),求的最小值;
(2)當(dāng)時(shí),判斷的單調(diào)性,并說明理由;
(3)求實(shí)數(shù)的范圍,使得對(duì)于區(qū)間上的任意三個(gè)實(shí)數(shù),都存在以為邊長的三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在圓上任取一點(diǎn),設(shè)點(diǎn)軸上的正投影為點(diǎn).當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),動(dòng)點(diǎn)滿足,動(dòng)點(diǎn)形成的軌跡為曲線.
(1)求曲線的方程;
(2)已知點(diǎn),若、是曲線上的兩個(gè)動(dòng)點(diǎn),且滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某創(chuàng)業(yè)投資公司擬投資開發(fā)某種新能源產(chǎn)品,估計(jì)能獲得10萬元到1000萬元的投資收益.現(xiàn)準(zhǔn)備制定一個(gè)對(duì)科研課題組的獎(jiǎng)勵(lì)方案:獎(jiǎng)金(單位:萬元)隨投資收益(單位:萬元)的增加而增加,且獎(jiǎng)金不超過9萬元,同時(shí)獎(jiǎng)金不超過投資收益的20%.
(1)若建立函數(shù)模型制定獎(jiǎng)勵(lì)方案,試用數(shù)學(xué)語言表述該公司對(duì)獎(jiǎng)勵(lì)函數(shù)模型的基本要求,并分析函數(shù)是否符合這個(gè)要求,并說明原因;
(2)若該公司采用函數(shù)作為獎(jiǎng)勵(lì)函數(shù)模型,試確定最小的正整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若函數(shù))在上的最大值為23,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
⑴判斷函數(shù)的單調(diào)性,并證明;
⑵求函數(shù)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),恒過定點(diǎn)
(1)求實(shí)數(shù);
(2)在(1)的條件下,將函數(shù)的圖象向下平移1個(gè)單位,再向左平移個(gè)單位后得到函數(shù),設(shè)函數(shù)的反函數(shù)為,直接寫出的解析式;
(3)對(duì)于定義在上的函數(shù),若在其定義域內(nèi),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知偶函數(shù)滿足:當(dāng)時(shí),,當(dāng)時(shí),
(Ⅰ)求表達(dá)式;
(Ⅱ)若直線與函數(shù)的圖像恰有兩個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍;
(Ⅲ)試討論當(dāng)實(shí)數(shù)滿足什么條件時(shí),直線的圖像恰有個(gè)公共點(diǎn),且這個(gè)公共點(diǎn)均勻分布在直線上.(不要求過程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某企業(yè)擬建造如圖所示的容器(不計(jì)厚度,長度單位:米),其中容器的中間為圓柱形,左右兩端均為半球形,按照設(shè)計(jì)要求容器的體積為立方米,且.假設(shè)該容器的建造費(fèi)用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費(fèi)用為3千元,半球形部分每平方米建造費(fèi)用為千元,設(shè)該容器的建造費(fèi)用為千元.

(Ⅰ)寫出關(guān)于的函數(shù)表達(dá)式,并求該函數(shù)的定義域;
(Ⅱ)求該容器的建造費(fèi)用最小時(shí)的

查看答案和解析>>

同步練習(xí)冊(cè)答案