3.已知函數(shù)f(x)=ax3+bx-1在x=1處有極小值-5.
(1)試求a,b的值,并求出f(x)的單調(diào)區(qū)間;
(2)若關(guān)于x的方程f(x)=2m-1有3個不同的實根,求實數(shù)m的取值范圍.

分析 (1)求導(dǎo),由題意可知:$\left\{\begin{array}{l}{f′(0)=0}\\{f(1)=-5}\end{array}\right.$,即可求得a和b的值;
(2)由(1)可知求得f(x)的極值,由題意可知,y=2m-1與f(x)有三個交點,即可求得實數(shù)m的取值范圍.

解答 解:(1)求導(dǎo),f′(x)=3ax2+b,
由題意可知$\left\{\begin{array}{l}{f′(0)=0}\\{f(1)=-5}\end{array}\right.$,則$\left\{\begin{array}{l}{3a+b=0}\\{a+b-1=-5}\end{array}\right.$,解得:$\left\{\begin{array}{l}{a=2}\\{b=-6}\end{array}\right.$,
則a=2,b=-6,
(2)由(1)可知:f(x)=2x3-6x-1,求導(dǎo)f′(x)=6x2-6,
令f′(x)=0,解得x=1或x=-1,
則x,f′(x),f(x)的變化如圖所示:

 x (-∞,-1)-1 (-1,1)(1,+∞) 
 f′(x)+ 0-+
 f(x) 極大值(3) 極小值(-5)↑ 
由x的方程f(x)=2m-1有3個不同的實根,
則y=2m-1與f(x)有三個交點,
則-5<2m-1<3,
解得:-2<m<2,
實數(shù)m的取值范圍(-2,2).

點評 本題考查導(dǎo)數(shù)的綜合應(yīng)用,考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)性及極值,考查直線與函數(shù)的交點問題,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若兩個相似的三角形的對應(yīng)高度的比為2:3,且周長的和為50cm,則這兩個相似三角形的周長分別為20cm,30cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.正方體ABCD-A1B1C1D1 的棱長為1,E為A1B1 的中點,則下列四個命題:
①點E到平面ABC1D1 的距離為$\frac{1}{2}$;
②直線BC與平面ABC1D1 所成的角等于45°
③空間四邊形ABCD1 在正方體六個面內(nèi)形成六個射影,其面積最小值是$\frac{1}{2}$
④AE與DC所成角的余弦值為$\frac{\sqrt{5}}{5}$
其中真命題的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知$\overrightarrow{a}$=(1,-2),$\overrightarrow$=(-3,2)
(1)求($\overrightarrow{a}+\overrightarrow$)•($\overrightarrow{a}-\overrightarrow$)的值.
(2)當(dāng)k為何值時,k$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-3$\overrightarrow$平行?平行時它們是同向還是反向?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.4名同學(xué)分別報名參加學(xué)校的美術(shù)、音樂、體操興趣小組,每人限報其中的一個興趣小組,則不同的報法種數(shù)是81  (用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.一個正整數(shù)數(shù)表如下(表中下一行中的數(shù)的個數(shù)是上一行中數(shù)的個數(shù)的2倍):
第1行1
第2行2   3
第3行4   5   6   7
則第10行中的第8個數(shù)是( 。
A.263B.505C.519D.530

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.$f(α)=\frac{{sin(2π-α)cos(π+α)cos(\frac{π}{2}+α)cos(\frac{π}{2}-α)}}{{cos(π-α)sin(3π-α)sin(-α)sin(\frac{π}{2}+α)}}$
(1)化f(α)為最簡形式
(2)f(α)=-2,求sin2α-sinαcosα-2cos2α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知f′(x)是定義在R上的函數(shù)f(x)的導(dǎo)數(shù),且滿足f′(x)+2f(x)>0,f(-1)=0,則f(x)<0解集為(-∞,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)$f(x)=\frac{1}{2}{x^3}+ax-b$在區(qū)間[-1,1]上為增函數(shù),則在區(qū)間[0,1]上任意取兩個實數(shù)a,b,使f(x)在區(qū)間[-1,1]上有且僅有一個零點的概率為(  )
A.$\frac{{\sqrt{3}}}{6}$B.$\frac{1}{2}$C.$\frac{7}{8}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

同步練習(xí)冊答案