4.已知f(x)是定義在R上的偶函數(shù),在[0,+∞)上是增函數(shù),若a=f(sin$\frac{12π}{7}$),b=f(cos$\frac{5π}{7}$),c=f(tan$\frac{2π}{7}$),則( 。
A.a>b>cB.c>a>bC.b>a>cD.c>b>a

分析 根據(jù)題意,由三角函數(shù)的誘導(dǎo)公式可得a=f(sin$\frac{12π}{7}$)=f(-sin$\frac{2π}{7}$),b=f(-cos$\frac{2π}{7}$),結(jié)合函數(shù)的奇偶性可得a=f(sin$\frac{2π}{7}$),b=f(cos$\frac{2π}{7}$),結(jié)合三角函數(shù)的定義分析可得0<cos$\frac{2π}{7}$<sin$\frac{2π}{7}$<1<tan$\frac{2π}{7}$,結(jié)合函數(shù)的奇偶性即可得答案.

解答 解:根據(jù)題意,
sin$\frac{12π}{7}$=sin(2π-$\frac{2π}{7}$)=-sin$\frac{2π}{7}$,則a=f(sin$\frac{12π}{7}$)=f(-sin$\frac{2π}{7}$),
cos$\frac{5π}{7}$=cos(π-$\frac{2π}{7}$)=-cos$\frac{2π}{7}$,b=f(-cos$\frac{2π}{7}$),
又由函數(shù)f(x)是定義在R上的偶函數(shù),
則a=f(sin$\frac{12π}{7}$)=f(-sin$\frac{2π}{7}$)=f(sin$\frac{2π}{7}$),
b=f(-cos$\frac{2π}{7}$)=f(cos$\frac{2π}{7}$),
又由$\frac{π}{4}$<$\frac{2π}{7}$<$\frac{π}{2}$,
則有0<cos$\frac{2π}{7}$<sin$\frac{2π}{7}$<1<tan$\frac{2π}{7}$,
又由函數(shù)在[0,+∞)上是增函數(shù),
則有c>a>b;
故選:B.

點(diǎn)評(píng) 本題考查函數(shù)單調(diào)性與奇偶性的綜合應(yīng)用,關(guān)鍵是涉及三角函數(shù)誘導(dǎo)公式的使用,關(guān)鍵是充分利用函數(shù)的奇偶性與單調(diào)性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)函數(shù)f(x)、g(x)的定義域分別為A,B,且A⊆B,若對(duì)于任意x∈A,都有g(shù)(x)=f(x),則稱g(x)函數(shù)為f(x)在B上的一個(gè)延拓函數(shù).設(shè)f(x)=e-x(x-1)(x>0),g(x)為f(x)在R上的一個(gè)延拓函數(shù),且g(x)是奇函數(shù).給出以下命題:
①當(dāng)x<0時(shí),g(x)=e-x(1-x);          
②函數(shù)g(x)有3個(gè)零點(diǎn);
③g(x)>0的解集為(-1,0)∪(1,+∞);     
 ④?x1,x2∈R,都有$|g({x_1})-g({x_2})|≤\frac{2}{e^2}$.
其中正確命題的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.過(guò)點(diǎn)(1,-1)的圓x2+y2-2x-4y-20=0的最大弦長(zhǎng)與最小弦長(zhǎng)的和為( 。
A.17B.18C.19D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.計(jì)算:(1)$({C_{100}^2+C_{100}^{97}})÷A_{101}^3$;
(2)$C_3^3+C_4^3+…+C_{10}^3$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知角α的終邊過(guò)點(diǎn)P(1,2),則tan($α-\frac{π}{4}$)=(  )
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=sin2x+2$\sqrt{3}$sinxcosx+3cos2x+α的最大值與最小值之和為-2.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)求使得函數(shù)f(x)≥0成立的x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.定義方程f(x)=f'(x)的實(shí)數(shù)根x0叫做函數(shù)的“新駐點(diǎn)”,若函數(shù)g(x)=x,h(x)=ln(x+1),t(x)=x3-1的“新駐點(diǎn)”分別為a,b,c,則a,b,c的大小關(guān)系為(  )
A.a>b>cB.c>a>bC.a>c>bD.b>a>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知R上的可導(dǎo)函數(shù)f(x)的圖象如圖所示,則不等式(x-2)f'(x)>0的解集為(  )
A.(-∞,-2)∪(1,+∞)B.(-∞,-2)∪(1,2)C.(-∞,1)∪(2,+∞)D.(-1,1)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知拋物線C:y2=2px(p>0)的焦點(diǎn)F與橢圓C':$\frac{x^2}{6}+\frac{y^2}{5}$=1的一個(gè)焦點(diǎn)重合,點(diǎn)A(x0,2)在拋物線上,過(guò)焦點(diǎn)F的直線l交拋物線于M、N兩點(diǎn).
(1)求拋物線C的方程以及|AF|的值;
(2)記拋物線C的準(zhǔn)線與x軸交于點(diǎn)B,若$\overrightarrow{MF}=λ\overrightarrow{FN}$,|BM|2+|BN|2=40,求實(shí)數(shù)λ的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案