12.如圖,四棱錐PABCD中,PD⊥平面ABCD,底面ABCD為矩形,PD=DC=4,AD=2,E為PC的中點(diǎn).
(1)求證:AD⊥PC;
(2)求三棱錐APDE的體積.

分析 (1)由已知可得PD⊥AD,AD⊥DC,由線(xiàn)面垂直的判定得AD⊥平面PDC,則AD⊥PC;
(2)由已知求解直角三角形可得DE=PE=$2\sqrt{2}$,從而求得△PED的面積,再由三棱錐體積公式求得三棱錐A-PDE的體積.

解答 (1)證明:如圖,∵PD⊥平面ABCD,∴PD⊥AD,
又底面ABCD為矩形,∴AD⊥DC,
又PD∩DC=D,∴AD⊥平面PDC,則AD⊥PC;
(2)解:∵PD⊥平面ABCD,∴PD⊥DC,
又PD=DC=4,E為PC的中點(diǎn),∴DE⊥PE,且DE=PE=$2\sqrt{2}$,
則${S}_{△PED}=\frac{1}{2}×2\sqrt{2}×2\sqrt{2}=4$,
又由(1)知,AD⊥平面PDE,且AD=2,
∴三棱錐A-PDE的體積V=$\frac{1}{3}{S}_{△PED}•AD=\frac{1}{3}×4×2=\frac{8}{3}$.

點(diǎn)評(píng) 本題考查空間中直線(xiàn)與直線(xiàn)的位置關(guān)系,考查了線(xiàn)面垂直的判定,考查多面體體積的求法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.執(zhí)行如圖所示的程序框圖,若輸入n的值為4,則輸出s的值為15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=$\sqrt{9-{3}^{x}}$
(1)求f(x)的定義域和值域;
(2)若f(x)>$\frac{\sqrt{5}}{4}$•3x,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.如圖,從圓O外一點(diǎn)A引圓的切線(xiàn)AD和割線(xiàn)ABC,已知AD=2$\sqrt{3}$,AC=6,則AB的距離為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知圓C:x2+(y-1)2=5,直線(xiàn)l過(guò)定點(diǎn)P(1,1).
(1)求圓心C到直線(xiàn)l距離最大時(shí)的直線(xiàn)l的方程;
(2)若l與圓C交與不同兩點(diǎn)A、B,求弦AB的中點(diǎn)M的軌跡方程;
(3)若l與圓C交與不同兩點(diǎn)A、B,點(diǎn)P分弦AB為$\frac{AP}{PB}=\frac{1}{2}$,求此時(shí)直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知-$\frac{π}{2}$<x<0,sinx+cosx=$\frac{1}{5}$,則sinx-cosx的值為( 。
A.$\frac{7}{5}$B.-$\frac{7}{5}$C.$±\frac{7}{5}$D.-$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知集合A={x|x=2n-1,n∈N*},B={y|y=5m+1,m∈N*},則集合A∩B中最小元素為( 。
A.1B.9C.11D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),x軸為正半軸為極軸,建立極坐標(biāo)系,已知曲線(xiàn)C1:$\left\{\begin{array}{l}{x=3+cost}\\{y=2+sint}\end{array}\right.$(t為參數(shù)),C2:$\left\{\begin{array}{l}{x=4cosθ}\\{y=3sinθ}\end{array}\right.$(θ為參數(shù)).
(1)過(guò)C1,C2的方程為普通方程,并說(shuō)明它們分別表示什么曲線(xiàn)?
(2)若C1上的點(diǎn)P對(duì)應(yīng)的參數(shù)為t=π,Q為C2上的動(dòng)點(diǎn),求PQ中點(diǎn)M到直線(xiàn)C3:ρ(cosθ-2sinθ)=7距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.設(shè)F1、F2分別為雙曲線(xiàn)$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn),若雙曲線(xiàn)的右支上存在一點(diǎn)P,使$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,且△F1PF2的三邊長(zhǎng)構(gòu)成等差數(shù)列,則此雙曲線(xiàn)的漸近線(xiàn)方程為y=±2$\sqrt{6}$x.

查看答案和解析>>

同步練習(xí)冊(cè)答案