【題目】為了解某校學生參加社區(qū)服務(wù)的情況,采用按性別分層抽樣的方法進行調(diào)查.已知該校共有學生960人,其中男生560人,從全校學生中抽取了容量為n的樣本,得到一周參加社區(qū)服務(wù)時間的統(tǒng)計數(shù)據(jù)如下:

超過1小時

不超過1小時

20

8

12

m

1)求mn;

2)能否有95%的把握認為該校學生一周參加社區(qū)服務(wù)時間是否超過1小時與性別有關(guān)?

3)從該校學生中隨機調(diào)查60名學生,一周參加社區(qū)服務(wù)時間超過1小時的人數(shù)記為X,以樣本中學生參加社區(qū)服務(wù)時間超過1小時的頻率作為該事件發(fā)生的概率,求X的分布列和數(shù)學期望.

附:

PK2k

0.050

0.010

0.001

k

3.841

6.635

10.828

K2.

【答案】1n48;m82)沒有95%的把握認為該校學生一周參加社區(qū)服務(wù)時間是否超過1小時與性別有關(guān)(3)詳見解析

【解析】

1)根據(jù)分層抽樣方法,計算比例,即可求解;

2)補全列聯(lián)表,按照公式計算,根據(jù)獨立性檢驗,可得結(jié)論;

3)根據(jù)題意,以樣本中學生參加社區(qū)服務(wù)時間超過1小時的頻率作為該事件發(fā)生的概率,計算概率為,符合二項分布,求出分布列,計算期望.

1)根據(jù)分層抽樣法,抽樣比例為,

n48;

m48208128

2)根據(jù)題意完善2×2列聯(lián)表,如下;

超過1小時

不超過1小時

合計

男生

20

8

28

女生

12

8

20

合計

32

16

48

計算,

所以沒有95%的把握認為該校學生一周參加社區(qū)服務(wù)時間是否超過1小時與性別有關(guān);

3)參加社區(qū)服務(wù)時間超過1小時的頻率為,

用頻率估計概率,從該校學生中隨機調(diào)査60名學生,則XB60),

所以k0,1,2,3,60;

.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】對任意xR,存在函數(shù)fx)滿足(

A.fcosx)=sin2xB.fsin2x)=sinx

C.fsinx)=sin2xD.fsinx)=cos2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知△ABC的面積為

(1)求sinBsinC;

(2)若6cosBcosC=1,a=3,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以為極點,軸為正半軸為極軸建立極坐標系.已知曲線的極坐標方程為 ,直線與曲線相交于兩點,直線過定點且傾斜角為交曲線兩點.

(1)把曲線化成直角坐標方程,并求的值;

(2)若成等比數(shù)列,求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】ABC的內(nèi)角AB,C的對邊分別為ab,c.已知asinA+B)=csin.

1)求A;

2)求sinBsinC的取值范圍;

3)若△ABC的面積為,周長為8,求a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知斜率為的直線與橢圓交于,兩點,線段的中點為

(1)證明:

(2)設(shè)的右焦點,上一點,.證明:,,成等差數(shù)列,并求該數(shù)列的公差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知多面體ABCDEF中,四邊形ABFE為正方形,,,GAB的中點,.

1)求證:平面CDEF;

2)求平面ACD與平面BCF所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)橢圓 )的上頂點為上的一點,以為直徑的圓經(jīng)過橢圓的右焦點

1)求橢圓的方程;

2)動直線與橢圓有且只有一個公共點,問:在軸上是否存在兩個定點,它們到直線的距離之積等于?如果存在,求出這兩個定點的坐標;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=12,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是

A. yx具有正的線性相關(guān)關(guān)系

B. 回歸直線過樣本點的中心(,

C. 若該大學某女生身高增加1cm,則其體重約增加0.85kg

D. 若該大學某女生身高為170cm,則可斷定其體重比為58.79kg

查看答案和解析>>

同步練習冊答案