6.設(shè)f0(x)=cosx,${f_1}(x)=f_0^'(x)$,${f_2}(x)=f_1^'(x)…$,${f_{n+1}}(x)=f_n^'(x),n∈{N^*}$,則f2015(x)=sinx.

分析 求出導(dǎo)數(shù),得到f(x)為周期為4的函數(shù),即可得到所求的解析式;

解答 解:(1)f0(x)=cosx,f1(x)=-sinx,
f2(x)=-cosx,f3(x)=sinx,f4(x)=cosx,…,
f(x)為周期為4的函數(shù),
即有f2015(x)=f4×503+3(x)=f3(x)=sinx,
故答案為:sinx.

點評 本題考查導(dǎo)數(shù)的運(yùn)算,考查函數(shù)的周期性,考查計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在某次試驗中,有兩個試驗數(shù)據(jù)x,y,統(tǒng)計的結(jié)果如表格.
x12345
y23445
(1)在給出的坐標(biāo)系中畫出x,y的散點圖;

(2)求出y對x的回歸直線方程$\widehaty=\widehatbx+\widehata$,并估計當(dāng)x為10時y的值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在同一平面直角坐標(biāo)系中經(jīng)過伸縮變換$\left\{\begin{array}{l}x'=5x\\ y'=3y\end{array}\right.$后,曲線C變?yōu)榍2x′2+8y′2=0,則曲線C的方程為(  )
A.25x2+36y2=0B.9x2+100y2=0C.10x+24y=0D.$\frac{2}{25}{x^2}+\frac{8}{9}{y^2}=0$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知向量$\overrightarrow{a}$,$\overrightarrow$,|$\overrightarrow{a}$|=|$\overrightarrow$|=1,$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,$\overrightarrow{c}$=2$\overrightarrow{a}$+3$\overrightarrow$,$\overrightarrownvfpzlb$=k$\overrightarrow{a}$-$\overrightarrow$ (k∈R),且$\overrightarrow{c}$$⊥\overrightarrowdhtftfv$,那么k=(  )
A.$\frac{8}{7}$B.2C.$\frac{4}{7}$D.$\frac{\sqrt{57}}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.解方程:
$(1)A_{2x}^4=60A_x^3$
$(2)C_{n+3}^{n+1}=C_{n+1}^{n-1}+C_{n+1}^n+C_n^{n-2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若a為實數(shù),且$\frac{2+ai}{1+i}$=3+i,則a=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)函數(shù)f(x)=sin2x-cos2x-4sin(x+$\frac{π}{4}$)sin(x-$\frac{π}{4}$)
(1)化簡f(x)并寫出最大值與最小值
(2)△ABC中,f(B)=-$\frac{1}{2}$,b=2,求ac的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知數(shù)列{an}中,a1=2,且an+1-4an=22n+1,則數(shù)列{${\frac{a_n}{4^n}}\right.$}的前n項和為$\frac{n}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)A、B是非空集合,定義A⊙B={x|x∈A,且x∉B},已知A={x|x2-x-2≤0},B={y|y=2x},則A⊙B=( 。
A.B.[-1,0]C.[-1,0)D.(1,2]

查看答案和解析>>

同步練習(xí)冊答案