19.如圖是某空間幾何體的三視圖其中主視圖、側(cè)視圖、俯視圖依次為直角三角形、直角梯形、等邊三角形,則該幾何體的體積(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{2\sqrt{3}}}{3}$D.$\sqrt{3}$

分析 如圖所示,該幾何體為四棱錐,其中側(cè)面ACBD⊥底面PAB.側(cè)面ACBD為直角梯形,PA⊥AB.

解答 解:如圖所示,該幾何體為四棱錐,其中側(cè)面ACBD⊥底面PAB.
側(cè)面ACBD為直角梯形,
PA⊥AB.
該幾何體的體積V=$\frac{1}{3}×\frac{1+2}{2}×2×\sqrt{3}$=$\sqrt{3}$.
故選:D.

點(diǎn)評(píng) 本題考查了四棱錐的三視圖、等邊三角形與直角梯形的面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,四棱錐P-ABCD中,AD∥BC,$AB=BC=\frac{1}{2}AD$,E,F(xiàn),H分別為線段AD,PC,CD的中點(diǎn),AC與BE交于O點(diǎn),G是線段OF上一點(diǎn).
(1)求證:AP∥平面BEF;
(2)求證:GH∥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.一個(gè)幾何體的三視圖如圖所示,其中俯視圖是一個(gè)腰長(zhǎng)為2的等腰直角三角形,側(cè)視圖是一個(gè)直角邊長(zhǎng)為1的直角三角形,則該幾何體外接球的體積是( 。
A.36πB.C.$\frac{9}{2}π$D.$\frac{27}{5}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)直線l過雙曲線C的一個(gè)焦點(diǎn),且與C的一條對(duì)稱軸垂直,l與C交于A,B兩點(diǎn),|AB|為C的實(shí)軸長(zhǎng)的2倍,則C的離心率為( 。
A.$\sqrt{3}$B.$\sqrt{2}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.復(fù)數(shù)$z=\frac{i}{1-i}$的共軛復(fù)數(shù)的模為(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{{\sqrt{3}}}{2}$,且過點(diǎn)$({2,\sqrt{3}}))$,直線l1:y=kx+m(m>0)與圓C2:(x-1)2+y2=1相切且與橢圓C1交于A,B兩點(diǎn).
(Ⅰ)求橢圓C1的方程;
(Ⅱ)過原點(diǎn)O作l1的平行線l2交橢圓于C,D兩點(diǎn),設(shè)|AB|=λ|CD|,求λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若集合A={0,1,2,4},B={1,2,3},則A∩B=( 。
A.{0,1,2,3,4}B.{0,1}C.{0,1,4}D.{1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{2}$=1(a>0)的長(zhǎng)軸長(zhǎng)為4,則C的離心率為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知p:-2≤x≤10,q:x2-2x+1-m2≤0(m>0),若¬p是¬q的必要非充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案