12.設(shè)變量x,y滿足約束條件$\left\{{\begin{array}{l}{x+y≥2}\\{x-y≤1}\\{y≤2}\end{array}}\right.$則目標(biāo)函數(shù)z=-2x+y的最小值為-4.

分析 由約束條件畫出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,利用數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.

解答 解:由約束條件$\left\{{\begin{array}{l}{x+y≥2}\\{x-y≤1}\\{y≤2}\end{array}}\right.$作出可行域如圖所示,
,
聯(lián)立方程組$\left\{\begin{array}{l}{y=2}\\{x-y=1}\end{array}\right.$,解得B(3,2),
化目標(biāo)函數(shù)z=-2x+y為y=2x+z,
由圖可知,當(dāng)直線y=-2x+z過B時,直線在y軸上的截距最小,
z有最小值為z=-2×3+2=-4.
故答案為:-4.

點評 本題考查了簡單的線性規(guī)劃問題與數(shù)形結(jié)合的解題思想方法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知曲線C1的參數(shù)方程是$\left\{{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}}\right.$(θ為參數(shù)),曲線C2的參數(shù)方程是$\left\{{\begin{array}{l}{x=-3+t}\\{y=\frac{3+3t}{8}}\end{array}}\right.$(t為參數(shù)).
(Ⅰ)將曲線C1,C2的參數(shù)方程化為普通方程;
(Ⅱ)求曲線C1上的點到曲線C2的距離的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知等差數(shù)列{an}的公差為2,前n項和為Sn,且S1,S2,S4成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)令bn=$\frac{4n}{{a}_{n}{a}_{n+1}}$•sin$\frac{{a}_{n}π}{2}$,求數(shù)列{bn}的前n項和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.三條側(cè)棱兩兩垂直的正三棱錐,其俯視圖如圖所示,主視圖的邊界是底邊長為2的等腰三角形,則主視圖的面積等于$\frac{{\sqrt{6}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),定義橢圓C上的點M(x0,y0)的“伴隨點”為$N(\frac{x_0}{a},\frac{y_0})$.
(1)求橢圓C上的點M的“伴隨點”N的軌跡方程;
(2)如果橢圓C上的點(1,$\frac{3}{2}$)的“伴隨點”為($\frac{1}{2}$,$\frac{3}{2b}$),對于橢圓C上的任意點M及它的“伴隨點”N,求$\overrightarrow{OM}•\overrightarrow{ON}$的取值范圍;
(3)當(dāng)a=2,b=$\sqrt{3}$時,直線l交橢圓C于A,B兩點,若點A,B的“伴隨點”分別是P,Q,且以PQ為直徑的圓經(jīng)過坐標(biāo)原點O,求△OAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖所示,∠BAC=$\frac{2π}{3}$,圓M與AB,AC分別相切于點D,E,AD=1,點P是圓M及其內(nèi)部任意一點,且$\overrightarrow{AP}=x\overrightarrow{AD}+y\overrightarrow{AE}$(x,y∈R),則x+y的取值范圍是( 。
A.$[1,4+2\sqrt{3}]$B.$[4-2\sqrt{3},4+2\sqrt{3}]$C.$[1,2+\sqrt{3}]$D.$[2-\sqrt{3},2+\sqrt{3}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若圓錐的側(cè)面積是底面積的2倍,則其母線與軸所成角的大小是30°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知等差數(shù)列{an}的前n項和為Sn,a1=-9,a2為整數(shù),且對任意n∈N*都有Sn≥S5
(1)求{an}的通項公式;
(2)設(shè)${b_1}=\frac{4}{3}$,${b_{n+1}}=\left\{\begin{array}{l}{a_n},\;\;\;\;\;\;\;\;\;\;\;\;\;n為奇數(shù)\\-{b_n}+{(-2)^n},n為偶數(shù)\;\end{array}\right.$(n∈N*),求{bn}的前n項和Tn
(3)在(2)的條件下,若數(shù)列{cn}滿足${c_n}={b_{2n}}+{b_{2n+1}}+λ{(-1)^n}{(\frac{1}{2})^{{a_n}+5}}\;(n∈{N^*})$.是否存在實數(shù)λ,使得數(shù)列{cn}是單調(diào)遞增數(shù)列.若存在,求出λ的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如圖,在棱長為2的正四面體A-BCD中,E、F分別為直線AB、CD上的動點,且$|{EF}|=\sqrt{3}$.若記EF中點P的軌跡為L,則|L|等于$\frac{π}{4}$.(注:|L|表示L的測度,在本題,L為曲線、平面圖形、空間幾何體時,|L|分別對應(yīng)長度、面積、體積.)

查看答案和解析>>

同步練習(xí)冊答案