【題目】將長為、寬為的矩形劃分為個小正方形.一粒子不重復(fù)不遺漏連續(xù)地通過每個小正方形的一條對角線.這件事能否辦到?若辦不到,請說明理由;若能辦到,請給出一種行走路線.

【答案】

【解析】

能辦到.

分兩種情況說明:

(1

、中至少有一個是奇數(shù),不妨設(shè)為奇數(shù).如圖,粒子從開始行走,至;;;.即給出時粒子的一種行走路線.,則粒子可繼續(xù)從出發(fā),行至;;;;.又給出時粒子的一種行走路線.假設(shè)時粒子已有,時的一種行走路線,那么,當(dāng)時,若為奇數(shù),粒子在長為,寬為的矩形上的個小正方形的一種行走路線終止于處,再沿下述行走路線即可:;;;;若為偶數(shù),粒子在長為,寬為的矩形上的個小正方形的一種行走路線終止于,再沿下述行走路線即可:;;.至此,已給出時粒子的一種行走路線.

由數(shù)學(xué)歸納法原理,當(dāng)時,均可設(shè)計出粒子的一種行走路線.

(2

、都是偶數(shù),如圖,粒子從開始行走至,然后在線段上方長為、寬為的矩形的個小正方形中行走.由(1)可知粒子有一種行走路線,終止于.此粒子再沿以下路線行走即可:;;;;;.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若方程有四個不等實根,時,不等式恒成立,則實數(shù)的最小值為()

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1).公路上兩鎮(zhèn)相距5公里,、往外各有兩條叉路成形狀,計劃在每條叉路上各建一加油站,要求每個站到、鎮(zhèn)及其他站(沿公路進過、鎮(zhèn))距離互不相同,且距離均為整數(shù)公里,最長不超過15公里,此計劃能否實現(xiàn)?

(2).向外各有3條叉路,欲建六個加油站,依然要求站與鎮(zhèn),站與站之間距離互不相同且為整數(shù)公路,最長者不超過28公里,能否實現(xiàn)?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)關(guān)于x的方程x2ax103x26x+32a0的實根分別為x1,x2x3,x4.x1x3x2x4,則實數(shù)a的取值范圍為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某健身館為響應(yīng)十九屆四中全會提出的聚焦增強人民體質(zhì),健全促進全民健身制度性舉措,提高廣大市民對全民健身運動的參與程度,推出了健身促銷活動,收費標(biāo)準(zhǔn)如下:健身時間不超過1小時免費,超過1小時的部分每小時收費標(biāo)準(zhǔn)為20元(不足l小時的部分按1小時計算).現(xiàn)有甲、乙兩人各自獨立地來該健身館健身,設(shè)甲、乙健身時間不超過1小時的概率分別為,,健身時間1小時以上且不超過2小時的概率分別為,,且兩人健身時間都不會超過3小時.

1)設(shè)甲、乙兩人所付的健身費用之和為隨機變量(單位:元),求的分布列與數(shù)學(xué)期望;

2)此促銷活動推出后,健身館預(yù)計每天約有300人來參與健身活動,以這兩人健身費用之和的數(shù)學(xué)期望為依據(jù),預(yù)測此次促銷活動后健身館每天的營業(yè)額.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)(x1)|xa|x2a(xR).

(1)a=﹣1,求方程f(x)1的解集;

(2) ,試判斷函數(shù)yf(x)R上的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線 的左、右焦點分別為, 為坐標(biāo)原點, 是雙曲線上在第一象限內(nèi)的點,直線分別交雙曲線左、右支于另一點, ,且,則雙曲線的離心率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為實數(shù).

1)若函數(shù)為定義域上的單調(diào)函數(shù),求的取值范圍.

2)若,滿足不等式成立的正整數(shù)解有且僅有一個,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“2019曹娥江國際馬拉松在上虞舉行,現(xiàn)要選派5名志愿者服務(wù)于四個不同的運動員救助點,每個救助點至少分配1人,若志愿者甲要求不到A救助點,則不同的分派方案有________.

查看答案和解析>>

同步練習(xí)冊答案