分析 (1)求出函數(shù)的導數(shù),解關于導函數(shù)的不等式,求出函數(shù)的單調區(qū)間,從而求出函數(shù)的最值即可;
(2))令$g(x)={e^x}-\frac{1}{2}{x^2}+ax-1,g'(x)={e^x}-x+a$,根據(jù)函數(shù)的單調性求出g(x)>g(0),證出結論即可.
解答 解:(1)f'(x)=ex-1,令f'(x)=0,則x=0,
x∈(-1,0),f'(x)<0,f(x)為減函數(shù),
x∈(0.2),f'(x)>0,f(x)為增函數(shù),
所以,f(x)min=f(0)=1+a;
又因為$f(-1)={e^{-1}}+1+a,f(2)={e^2}-2+a,f(-1)-f(2)=\frac{1}{e}-3-{e^2}<0$,
所以$f{(x)_{max}}=f(2)={e^2}-2+a$.
(2)證明:令$g(x)={e^x}-\frac{1}{2}{x^2}+ax-1,g'(x)={e^x}-x+a$,
由(1)知,g'(x)≥g'(0)=1+a>0,
所以g(x)在(0,+∞)單調遞增,
所以g(x)>g(0)=0,
所以,當a>-1,且x>0時,${e^x}>\frac{1}{2}{x^2}-ax+1$.
點評 本題考查了函數(shù)的單調性、最值問題,考查導數(shù)的應用以及不等式的證明,是一道中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|-3<x<-1} | B. | {x|-3<x<0} | C. | {x|-1<x<3} | D. | {x|x>-1} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
使用時間(單位:天) | 10:20 | 21:30 | 31:40 | 41:50 | 51:60 |
個數(shù) | 10 | 40 | 80 | 50 | 20 |
A. | $\frac{13}{16}$ | B. | $\frac{27}{64}$ | C. | $\frac{25}{32}$ | D. | $\frac{27}{32}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com