分析 由已知可得:b2=2a+a2,又由余弦定理可得:b2=a2+4-4acosB,整理可得:a=$\frac{4}{2+4cosB}$,由范圍B∈(0,$\frac{π}{2}$),可求cosB∈(0,1),進(jìn)而可求a的范圍.
解答 解:∵b2-a2=ac,c=2,可得:b2=2a+a2,
又∵由余弦定理可得:b2=a2+c2-2accosB=a2+4-4acosB,
∴2a+a2=a2+4-4acosB,整理可得:a=$\frac{4}{2+4cosB}$,
∵B∈(0,$\frac{π}{2}$),
∴cosB∈(0,1),可得:2+4cosB∈(2,6),
∴a=$\frac{4}{2+4cosB}$∈($\frac{2}{3}$,2).
故答案為:($\frac{2}{3}$,2).
點(diǎn)評 本題主要考查了余弦定理,余弦函數(shù)的圖象和性質(zhì)在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (3,5] | B. | (-∞,-3)∪(5,+∞) | C. | (-∞,-3)∪[5,+∞) | D. | (-∞,2]∪(3,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com