A. | 與平面A1DE垂直的直線必與直線BM垂直 | |
B. | 異面直線BM與A1E所成角是定值 | |
C. | 一定存在某個(gè)位置,使DE⊥MO | |
D. | 三棱錐A1-ADE外接球半徑與棱AD的長之比為定值 |
分析 對于A,延長CB,DE交于H,連接A1H,運(yùn)用中位線定理和線面平行的判定定理,可得BM∥平面A1DE,即可判斷A;
對于B,運(yùn)用平行線的性質(zhì)和解三角形的余弦定理,以及異面直線所成角的定義,即可判斷B;
對于C,連接A1O,運(yùn)用線面垂直的判定定理和性質(zhì)定理,可得AC與DE垂直,即可判斷C;
對于D,由直角三角形的性質(zhì),可得三棱錐A1-ADE外接球球心為O,即可判斷D.
解答 解:對于A,延長CB,DE交于H,連接A1H,由E為AB的中點(diǎn),
可得B為CH的中點(diǎn),又M為A1C的中點(diǎn),可得BM∥A1H,BM?平面A1DE,
A1H?平面A1DE,則BM∥平面A1DE,故與平面A1DE垂直的直線必與直線BM垂直,則A正確;
對于B,設(shè)AB=2AD=2a,過E作EG∥BM,G∈平面A1DC,
則∠A1EG=∠EA1H,
在△EA1H中,EA1=a,EH=DE=$\sqrt{2}$a,A1H=$\sqrt{{a}^{2}+2{a}^{2}-2•a•\sqrt{2}a•(-\frac{\sqrt{2}}{2})}$=$\sqrt{5}a$,則∠EA1H為定值,即∠A1EG為定值,則B正確;
對于C,連接A1O,可得DE⊥A1O,若DE⊥MO,即有DE⊥平面A1MO,
即有DE⊥A1C,由A1C在平面ABCD中的射影為AC,
可得AC與DE垂直,但AC與DE不垂直.
則不存在某個(gè)位置,使DE⊥MO,則C不正確;
對于D,連接OA,由直角三角形斜邊的中線長為斜邊的一半,可得
三棱錐A1-ADE外接球球心為O,半徑為$\frac{\sqrt{2}}{2}a$,
即有三棱錐A1-ADE外接球半徑與棱AD的長之比為定值.則D正確.
故選:C.
點(diǎn)評 本題考查命題的真假判斷與應(yīng)用,考查了線面、面面平行與垂直的判定和性質(zhì)定理,考查空間想象能力和推理能力,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-2,-1,0} | B. | {0,1,2} | C. | {-1,0,1} | D. | {-2,-1,0,1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com