4.設(shè)集合M={x|-2<x<3}N={-2,-1,0,1}},則M∩N=( 。
A.{-2,-1,0}B.{0,1,2}C.{-1,0,1}D.{-2,-1,0,1}

分析 根據(jù)交集的定義即可求出

解答 解:集合M={x|-2<x<3}N={-2,-1,0,1}},則M∩N={-1,0,1} 
故選C.

點(diǎn)評(píng) 本題考查集合的求法,交集的運(yùn)算,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,第二象限的點(diǎn)P(x0,y0)滿足bx0+ay0=0,若線段PF2的垂直平分線恰為雙曲線C的過一、三象限的漸近線,則雙曲線C的離心率為(  )
A.$\sqrt{5}$B.4C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.當(dāng)今,手機(jī)已經(jīng)成為人們不可或缺的交流工具,人們常常把喜歡玩手機(jī)的人冠上了名號(hào)“低頭族”,手機(jī)已經(jīng)嚴(yán)重影響了人們的生活,一媒體為調(diào)查市民對低頭族的認(rèn)識(shí),從某社區(qū)的500名市民中,隨機(jī)抽取n名市民,按年齡情況進(jìn)行統(tǒng)計(jì)的得到頻率分布表和頻率分布直方圖如下:
 組數(shù)分組(單位:歲)頻數(shù)頻率
[20,25)50.05
 2[25,30)200.20
 3[30,35)a0.35
 4[35,40)30b
 5[40,45]100.10
合計(jì)n1.00
(1)求出表中的a,b的值,并補(bǔ)全頻率分布直方圖;
(2)媒體記者為了做好調(diào)查工作,決定在第2,4,5組中用分層抽樣的方法抽取6名市民進(jìn)行問卷調(diào)查,再從這6名市民中隨機(jī)抽取2名接受電視采訪,求第2組至少有一名接受電視采訪的概率?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}滿足${a_1}+3{a_2}+{3^2}{a_3}+…+{3^{n-1}}{a_n}=\frac{n+1}{3}$,(n∈N+).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)${b_n}=\frac{1}{{{3^{n+1}}(1-{a_n})(1-{a_{n+1}})}}$,數(shù)列{bn}的前n項(xiàng)和Sn,求證:${S_n}<\frac{7}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若命題“?x0∈R,x02+(a-1)x0+1<0”是真命題,則實(shí)數(shù)a的取值范圍是( 。
A.[-1,3]B.(-1,3)C.(-∞,-1]∪[3,+∞)D.(-∞,-1)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.以坐標(biāo)原點(diǎn)為對稱中心,兩坐標(biāo)軸為對稱軸的雙曲線C的一條漸近線傾斜角為$\frac{π}{3}$,則雙曲線C的離心率為2或$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某商家在網(wǎng)上銷售一種商品,從該商家的銷售數(shù)據(jù)中抽取6天的價(jià)格與銷量的對應(yīng)數(shù)據(jù),如下表所示:
價(jià)格x(百元)456789
銷量y(件/天)908483807568
(Ⅰ)由表中數(shù)據(jù),看出可用線性回歸模型擬合y與x的關(guān)系,試求y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,并預(yù)測當(dāng)價(jià)格為1000元時(shí),每天的商品的銷量為多少;
(Ⅱ)若以從這6天中隨機(jī)抽取2天,至少有1天的價(jià)格高于700元的概率.
參考數(shù)據(jù):$\sum_{i=1}^{6}$xiyi=3050,$\sum_{i=1}^{6}$x${\;}_{i}^{2}$=271.
參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{{8-{a^2}}}$=1(a>0)的焦點(diǎn)在x軸上,且橢圓E的焦距為4.
(Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;
(Ⅱ)過橢圓外一點(diǎn)M(m,0)(m>a)作傾斜角為$\frac{5π}{6}$的直線l與橢圓交于C,D兩點(diǎn),若橢圓E的右焦點(diǎn)F在以弦CD為直徑的圓的內(nèi)部,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖,矩形ABCD中,AB=2AD,E為邊AB的中點(diǎn),將△ADE沿直線DE翻轉(zhuǎn)成△A1DE(A1∉平面ABCD),若M、O分別為線段A1C、DE的中點(diǎn),則在△ADE翻轉(zhuǎn)過程中,下列說法錯(cuò)誤的是( 。
A.與平面A1DE垂直的直線必與直線BM垂直
B.異面直線BM與A1E所成角是定值
C.一定存在某個(gè)位置,使DE⊥MO
D.三棱錐A1-ADE外接球半徑與棱AD的長之比為定值

查看答案和解析>>

同步練習(xí)冊答案