10.為加強(qiáng)大學(xué)生實踐、創(chuàng)新能力和團(tuán)隊精神的培養(yǎng),促進(jìn)高等教育教學(xué)改革,教育部門主辦了全國大學(xué)生智能汽車競賽.該競賽分為預(yù)賽和決賽兩個階段.通過預(yù)賽,選拔出甲、乙等五支隊伍參加決賽,參加決賽的隊伍按照抽簽方式?jīng)Q定出場順序.
(Ⅰ)求決賽中甲、乙兩支隊伍恰好排在前兩位的概率;
(Ⅱ) 若決賽中甲隊和乙隊之間間隔的隊伍數(shù)記為X,求X的分布列和數(shù)學(xué)期望E(X).

分析 (Ⅰ)決賽中甲、乙兩支隊伍恰好排在前兩位可有兩種排法,其余3支隊伍共有3!種排法,利用乘法原理,即可求得結(jié)論;
(Ⅱ)確定x的可能取值,求出概率,即可得到分辨率與期望.

解答 (Ⅰ)解:(Ⅰ)設(shè)“甲、乙兩支隊伍恰好排在前兩位”為事件A,則P(A)=$\frac{2{×A}_{3}^{3}}{{A}_{5}^{5}}=\frac{1}{10}$
所以 甲、乙兩支隊伍恰好排在前兩位的概率為$P=\frac{1}{10}$…..(5分)
(Ⅱ)(Ⅱ)隨機(jī)變量X的可能取值為0,1,2,3(6分)
P(X=0)=$\frac{2×4!}{5!}=\frac{2}{5}$,P(X=1)=$\frac{3×2×3!}{5!}=\frac{3}{10}$,P(X=2)=$\frac{2×2!×3×2!}{5!}=\frac{1}{5}$,P(X=3)=$\frac{1}{10}$.
所以X的分布列為

X0123
P$\frac{2}{5}$$\frac{3}{10}$$\frac{1}{5}$$\frac{1}{10}$
Eξ=1…..(12分)

點評 本題考查概率的求解,考查分布列與期望,解題的關(guān)鍵是確定變量的取值與含義,正確計算其概率,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.某幾何體的三視圖如圖所示,圖中四邊形都是邊長為2的正方形,兩條虛線相互垂直,則該幾何體的表面積是( 。
A.$24+({\sqrt{2}+1})π$B.$24+({\sqrt{2}-1})π$C.$24-({\sqrt{2}+1})π$D.$24-({\sqrt{2}-1})π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的焦點為F1,F(xiàn)2,且C上的點P滿足$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$=0,|PF1|=3,|PF2|=4,則雙曲線C的離心率為( 。
A.$\frac{{\sqrt{10}}}{2}$B.$\sqrt{5}$C.$\frac{5}{2}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知α∈($\frac{π}{2}$,π),且cos2α+sin(π+2α)=$\frac{3}{10}$,則tanα=-7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在平面直角坐標(biāo)系xOy中,已知直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=1+t}\\{y=\sqrt{3}t}\end{array}}\right.$(t為參數(shù)),橢圓C的參數(shù)方程為$\left\{\begin{array}{l}x=2cosθ\\ y=\sqrt{3}sinθ\end{array}$ (θ為參數(shù))(1).直線l的極坐標(biāo)方程與橢圓C的普通方程(2)設(shè)P(1,0)直線l與橢圓C相交于A,B兩點,求線段||PA|-|PB||的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知直線y=x-1與橢圓$\frac{x^2}{4}+\frac{y^2}{3}=1$交于A、B兩點,則線段AB的長為$\frac{24}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的兩個焦點為${F_1},{F_2},|{{F_1}{F_2}}|=2\sqrt{2}$,點A,B在橢圓上,F(xiàn)1在線段AB上,且△ABF2的周長等于$4\sqrt{3}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過圓O:x2+y2=4上任意一點P作橢圓C的兩條切線PM和PN與圓O交于點M,N,求△PMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.函數(shù)fn(x)=xn+bx+c(n∈Z,b,c∈R).
(1)若n=-1,且f-1(1)=f-1($\frac{1}{2}$)=4,試求實數(shù)b,c的值;
(2)設(shè)n=2,若對任意x1,x2∈[-1,1]有|f2(x1)-f2(x2)|≤4恒成立,求b的取值范圍;
(3)當(dāng)n=1時,已知bx2+cx-a=0,設(shè)g(x)=$\frac{{\sqrt{1-{x^4}}}}{{1+{x^2}}}$,是否存在正數(shù)a,使得對于區(qū)間$[{-\frac{{2\sqrt{5}}}{5},\frac{{2\sqrt{5}}}{5}}]$上的任意三個實數(shù)m,n,p,都存在以f1(g(m)),f1(g(n)),f1(g(p))為邊長的三角形?若存在,求出a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在極坐標(biāo)系中,已知直線l的方程為$ρcos(θ-\frac{π}{4})=2$,圓C的方程為ρ=4sinθ-2cosθ,試判斷直線l與圓C的位置關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案