17.已知不等式|x-a|+|x+b|≥3的解集為R,則a+b的取值范圍是(-∞,-3]∪[3,+∞).

分析 根據(jù)絕對值的性質(zhì)得到|a+b|≥3,求出a+b的范圍即可.

解答 解:若|x-a|+|x+b|≥3的解集為R,
則|x-a-x-b|=|a+b|≥3,
即a+b≥3或a+b≤-3,
故答案為:(-∞,-3]∪[3,+∞).

點評 本題考查了絕對值的性質(zhì),考查解絕對值不等式問題,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=2$\sqrt{3}$sinxcosx+2cos2x-1(x∈R)
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)若A是銳角△ABC的一個內(nèi)角,且滿足f(A)=$\frac{2}{3}$,求sin2A的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知a,b,c分別是△ABC三個內(nèi)角A,B,C所對的邊,滿足2c2-2a2=b2,求證:2ccosA-2acosC=b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖是某年青年歌手大獎賽中,七位評委為甲、乙兩名選手打出的分數(shù)的莖葉圖(其中m為數(shù)字09中的一個).去掉一個最高分和一個最低分后,甲、乙兩名選手得分的平均數(shù)分別為a1,a2,則一定有( 。
A.a1>a2B.a1<a2
C.a1=a2D.a1,a2的大小與m的值有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x),g(x)滿足f(1)=1,f'(1)=1,g(1)=2,g'(1)=1,則函數(shù)F(x)=$\frac{f(x)^{2}}{g(x)}$的圖象在x=1處的切線方程為( 。
A.3x-4y+5=0B.3x-4y-1=0.C.4x-3y-5=0D.4x-3y+5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=|lnx|,a>b>0,f(a)=f(b),則$\frac{{{a^2}+{b^2}}}{a-b}$的最小值等于2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列說法中正確的是( 。
A.第一象限角一定是正角B.終邊與始邊均相同的角一定相等
C.-834°是第四象限角D.鈍角一定是第二象限角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知圓C經(jīng)過點A(0,2)和點B(2,-2),且圓心C在直線x-y+1=0上.
(Ⅰ)求圓C的標(biāo)準(zhǔn)式方程
(Ⅱ)若有斜率的直線m經(jīng)過點(1,4),且被圓C截得的弦長為6,求直線m的斜截式方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知向量$\overrightarrow{a}$=(m,n),$\overrightarrow$=(1,1),滿足$\overrightarrow{a}$•$\overrightarrow$≥2且$\overrightarrow{a}$•($\overrightarrow{a}$-2$\overrightarrow$)≤0,則$\overrightarrow{a}$•$\overrightarrow$的取值范圍是[2,4].

查看答案和解析>>

同步練習(xí)冊答案