12.將函數(shù)f(x)=cosωx的圖象向右平移$\frac{π}{2}$個(gè)單位后得到函數(shù)$g(x)=sin({ωx-\frac{π}{4}})$的圖象,則正數(shù)ω的最小值等于$\frac{3}{2}$.

分析 利用誘導(dǎo)公式將函數(shù)名變相同,根據(jù)三角函數(shù)的平移變換規(guī)律即可求解.

解答 解:由函數(shù)f(x)=cosωx=sin(ωx+$\frac{π}{2}$)圖象向右平移$\frac{π}{2}$個(gè)單位后,可得sin[ω(x$-\frac{π}{2}$)+$\frac{π}{2}$)]=sin($ωx-\frac{πω}{2}+\frac{π}{2}$)
即$\frac{πω}{2}-\frac{π}{2}=\frac{π}{4}-2kπ$.
解得:$ω=\frac{3}{2}-4k$,
當(dāng)k=0時(shí),可得正數(shù)ω的最小值,即為$\frac{3}{2}$.
故答案為$\frac{3}{2}$.

點(diǎn)評(píng) 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.執(zhí)行如圖所示的程序框圖,若輸出k=5,則輸入p的取值范圍為(7,15].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知ω>0,將函數(shù)f(x)=cosωx的圖象向右平移$\frac{π}{2}$個(gè)單位后得到函數(shù)$g(x)=sin({ωx-\frac{π}{4}})$的圖象,則ω的最小值是( 。
A.$\frac{3}{2}$B.3C.$\frac{4}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=x-axlnx(a≤0),$g(x)=\frac{f(x)}{x}-1$.
(1)求函數(shù)f(x)單調(diào)區(qū)間;
(2)當(dāng)a=-1時(shí),
①求函數(shù)f(x)在[e-e,e]上的值域;
②求證:$\sum_{k=2}^n{\frac{1}{g(k)}}>\frac{{3{n^2}-n-2}}{n(n+1)}$,其中n∈N,n≥2.(參考數(shù)據(jù)ln2≈0.6931)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知α為銳角,且$cos({α+\frac{π}{4}})=\frac{3}{5}$,則cos2α=( 。
A.$\frac{24}{25}$B.$\frac{7}{25}$C.$-\frac{24}{25}$D.$±\frac{24}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.$\frac{1+i}{-2i}$=( 。
A.$-\frac{1}{2}-\frac{1}{2}i$B.$-\frac{1}{2}+\frac{1}{2}i$C.$\frac{1}{2}-\frac{1}{2}i$D.$\frac{1}{2}+\frac{1}{2}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若x,y∈R+,且x+3y=5xy,則3x+4y的最小值是( 。
A.5B.$\frac{24}{5}$C.$\frac{{2\sqrt{3}}}{5}$D.$\frac{19}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若執(zhí)行如圖所示程序框圖,則輸出的s值為( 。
A.-2016B.2016C.-2017D.2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊分別為a,b,c.
(Ⅰ)若C=2B,求證:cosA=3cosB-4cos3B;
(Ⅱ)若bsinB-csinC=a,且△ABC的面積S=$\frac{^{2}+{c}^{2}-{a}^{2}}{4}$,求角B.

查看答案和解析>>

同步練習(xí)冊(cè)答案