【題目】(選做題)[選修4-4:坐標(biāo)系與參數(shù)方程]

已知曲線C的參數(shù)方程為 (θ為參數(shù)).以原點O為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)方程.
(1)求曲線C的極坐標(biāo)方程;
(2)若直線l:θ=α(α∈[0,π),ρ∈R)與曲線C相交于A,B兩點,設(shè)線段AB的中點為M,求|OM|的最大值.

【答案】
(1)

解:曲線C的普通方程為(x+1)2+(y﹣1)2=4,

由x=ρcosθ,y=ρsinθ,得ρ2+2ρcosθ﹣2ρsinθ﹣2=0.


(2)

解:聯(lián)立θ=α和ρ2+2ρcosθ﹣2ρsinθ﹣2=0,

得ρ2+2ρ(cosα﹣sinα)﹣2=0,

設(shè)A(ρ1,α),B(ρ2,α),

則ρ12=2(cosα﹣sinα)=2 ,

由|OM|= ,得|OM|=

當(dāng)α= 時,|OM|取最大值


【解析】( I)利用平方關(guān)系可得曲線C的普通方程,把x=ρcosθ,y=ρsinθ,代入即可得出.(II)聯(lián)立θ=α和ρ2+2ρcosθ﹣2ρsinθ﹣2=0,得ρ2+2ρ(cosα﹣sinα)﹣2=0,設(shè)A(ρ1 , α),B(ρ2 , α),可得ρ12=2(cosα﹣sinα)=2 ,即可得出.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在三棱錐P﹣ABC中,VPABC= ,∠APC= ,∠BPC= ,PA⊥AC,PB⊥BC,且平面PAC⊥平面PBC,那么三棱錐P﹣ABC外接球的體積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)是定義在區(qū)間(0,+∞)上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f′(x),且滿足xf′(x)+2f(x)>0,則不等式 的解集為(
A.{x>﹣2011}
B.{x|x<﹣2011}
C.{x|﹣2011<x<0}
D.{x|﹣2016<x<﹣2011}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: + =1(a>b>0)的左、右焦點分別為F1、F2 , 由橢圓短軸的一個端點與兩個焦點構(gòu)成一個等邊三角形.它的面積為4
(1)求橢圓C的方程;
(2)已知動點B(m,n)(mn≠0)在橢圓上,點A(0,2 ),直線AB交x軸于點D,點B′為點B關(guān)于x軸的對稱點,直線AB′交x軸于點E,若在y軸上存在點G(0,t),使得∠OGD=∠OEG,求點G的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列{an}的前n項和為Sn , 且S4=4S2 , a2n=2an+1﹣3.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}滿足a1b1+a2b2+…+anbn=3﹣ ,求{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市為了解各!秶鴮W(xué)》課程的教學(xué)效果,組織全市各學(xué)校高二年級全體學(xué)生參加了國學(xué)知識水平測試,測試成績從高到低依次分為A、B、C、D四個等級,隨機調(diào)閱了甲、乙兩所學(xué)校各60名學(xué)生的成績,得到如圖所示分布圖:
(Ⅰ)試確定圖中實數(shù)a與b的值;
(Ⅱ)規(guī)定等級D為“不合格”,其他等級為“合格”,以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,若從甲、乙兩!昂细瘛钡膶W(xué)生中各選1名學(xué)生,求甲校學(xué)生成績高于乙校學(xué)生成績的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等差數(shù)列 中,
(1)求數(shù)列 的通項公式;
(2)設(shè)數(shù)列 是首項為1,公比為 的等比數(shù)列,求 的前 項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點P(a,b)(ab≠0)是圓x2+y2=r2內(nèi)的一點,直線m是以P為中點的弦所在直線,直線l的方程為ax+by=r2 , 那么(
A.m∥l,且l與圓相交
B.m⊥l,且l與圓相切
C.m∥l,且l與圓相離
D.m⊥l,且l與圓相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) 為定義在(﹣∞,0)∪(0,+∞)上的奇函數(shù).
(1)求實數(shù)a的值;
(2)判斷函數(shù)f(x)在區(qū)間(a+1,+∞)上的單調(diào)性,并用定義法證明.

查看答案和解析>>

同步練習(xí)冊答案