精英家教網 > 高中數學 > 題目詳情

【題目】設函數 為定義在(﹣∞,0)∪(0,+∞)上的奇函數.
(1)求實數a的值;
(2)判斷函數f(x)在區(qū)間(a+1,+∞)上的單調性,并用定義法證明.

【答案】
(1)解:∵ 為定義在(﹣∞,0)∪(0,+∞)上的奇函數,

∴f(﹣x)=﹣f(x),

,∴a=0


(2)解:函數f(x)在區(qū)間(1,+∞)上是增函數.

證明:設1<x1<x2,

∵1<x1<x2,∴x1﹣x2<0,

∴f(x1)﹣f(x2)<0,即f(x1)<f(x2).

∴函數f(x)在區(qū)間(1,+∞)上是增函數


【解析】(1)利用 為定義在(﹣∞,0)∪(0,+∞)上的奇函數,f(﹣x)=﹣f(x),即可求實數a的值;(2)利用函數單調性的定義進行證明.
【考點精析】認真審題,首先需要了解函數單調性的判斷方法(單調性的判定法:①設x1,x2是所研究區(qū)間內任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較),還要掌握函數奇偶性的性質(在公共定義域內,偶函數的加減乘除仍為偶函數;奇函數的加減仍為奇函數;奇數個奇函數的乘除認為奇函數;偶數個奇函數的乘除為偶函數;一奇一偶的乘積是奇函數;復合函數的奇偶性:一個為偶就為偶,兩個為奇才為奇)的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】(選做題)[選修4-4:坐標系與參數方程]

已知曲線C的參數方程為 (θ為參數).以原點O為極點,x軸的非負半軸為極軸建立極坐標方程.
(1)求曲線C的極坐標方程;
(2)若直線l:θ=α(α∈[0,π),ρ∈R)與曲線C相交于A,B兩點,設線段AB的中點為M,求|OM|的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知在△ABC中,角A,B,C所對的邊分別為a,b,c,且a<b<c,C=2A.
(1)若c= a,求角A;
(2)是否存在△ABC恰好使a,b,c是三個連續(xù)的自然數?若存在,求△ABC的周長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某中學的高一、高二、高三共有學生1350人,其中高一500人,高三比高二少50人,為了解該校學生健康狀況,現采用分層抽樣方法進行調查,在抽取的樣本中有高一學生120人,則該樣本中的高二學生人數為(
A.80
B.96
C.108
D.110

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設集合A、B均為實數集R的子集,記:A+B={a+b|a∈A,b∈B};
(1)已知A={0,1,2},B={﹣1,3},試用列舉法表示A+B;
(2)設a1= ,當n∈N* , 且n≥2時,曲線 的焦距為an , 如果A={a1 , a2 , …,an},B= ,設A+B中的所有元素之和為Sn , 對于滿足m+n=3k,且m≠n的任意正整數m、n、k,不等式Sm+Sn﹣λSk>0恒成立,求實數λ的最大值;
(3)若整數集合A1A1+A1 , 則稱A1為“自生集”,若任意一個正整數均為整數集合A2的某個非空有限子集中所有元素的和,則稱A2為“N*的基底集”,問:是否存在一個整數集合既是自生集又是N*的基底集?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系xOy中,以O為極點,x軸正半軸為極軸建立坐標系,直線l的參數方程為 ,(t為參數),曲線C1的方程為ρ(ρ﹣4sinθ)=12,定點A(6,0),點P是曲線C1上的動點,Q為AP的中點.
(1)求點Q的軌跡C2的直角坐標方程;
(2)直線l與直線C2交于M,N兩點,若|MN|≥2 ,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數g(x)=a﹣x2 ≤x≤e,e為自然對數的底數)與h(x)=2lnx的圖像上存在關于x軸對稱的點,則實數a的取值范圍是(
A.[1, +2]
B.[1,e2﹣2]
C.[ +2,e2﹣2]
D.[e2﹣2,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)=lnx,g(x)=ax+ ﹣3(a∈R).
(1)當a=2時,解關于x的方程g(ex)=0(其中e為自然對數的底數);
(2)求函數φ(x)=f(x)+g(x)的單調增區(qū)間;
(3)當a=1時,記h(x)=f(x)g(x),是否存在整數λ,使得關于x的不等式2λ≥h(x)有解?若存在,請求出λ的最小值;若不存在,請說明理由.(參考數據:ln2≈0.6931,ln3≈1.0986).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓O:x2+y2=1過橢圓C: (a>b>0)的短軸端點,P,Q分別是圓O與橢圓C上任意兩點,且線段PQ長度的最大值為3. (Ⅰ)求橢圓C的方程;
(Ⅱ)過點(0,t)作圓O的一條切線交橢圓C于M,N兩點,求△OMN的面積的最大值.

查看答案和解析>>

同步練習冊答案