12.給出下列兩個(gè)命題:命題p:若在邊長(zhǎng)為1的正方形ABCD內(nèi)任取一點(diǎn)M,則|MA|≤1的概率為$\frac{π}{4}$.命題q:若函數(shù)f(x)=x+$\frac{4}{x},({x∈[{1,2}]})$,則f(x)的最小值為4.則下列命題為真命題的是( 。
A.p∧qB.¬pC.p∧(¬q)D.(¬p)∧(¬q)

分析 分別判定命題p、q的真假,再根據(jù)復(fù)合命題真假的真值表判定即可.

解答 解:滿足條件的正方形ABCD,如下圖示:

其中滿足動(dòng)點(diǎn)M到定點(diǎn)A的距離|MA|≤1的平面區(qū)域如圖中陰影所示:
則正方形的面積S正方形=1陰影部分的面積為$\frac{π}{4}$,
故動(dòng)點(diǎn)P到定點(diǎn)A的距離|MA|≤1的概率P=$\frac{π}{4}$.
故命題p為真命題.
對(duì)于函數(shù)f(x)=x+$\frac{4}{x}$,x∈[1,2],
則f′(x)=1-$\frac{4}{{x}^{2}}$=$\frac{(x+2)(x-2)}{{x}^{2}}$≤0,
則f(x)在區(qū)間[1,2]上單調(diào)遞減,
f(x)的最小值為f(2)=4,故命題q為真命題.
所以:p∧q為真命題;¬p假命題;p∧(¬q)假命題;(¬p)∧(¬q)假命題;
故選:A.

點(diǎn)評(píng) 本題考查了復(fù)合命題真假的判定,解題的關(guān)鍵是要把每個(gè)命題的真假給與正確判斷,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且A=2C.
(Ⅰ)若△ABC為銳角三角形,求$\frac{a}{c}$的取值范圍;
(Ⅱ)若b=1,c=3,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.某市為了引導(dǎo)居民合理用水,居民生活用水實(shí)行二級(jí)階梯水價(jià)計(jì)量辦法,具體如下:第一階梯,每戶居民月用水量不超過(guò)12噸,價(jià)格為4元/噸;第二階梯,每戶居民月用水量超過(guò)12噸,超過(guò)部分的價(jià)格為8元/噸.為了了解全市居民月用水量的分布情況,通過(guò)抽樣獲得了100戶居民的月用水量(單位:噸),將數(shù)據(jù)按照[0,2],(2,4],…,(14,16]分成8組,制成了如圖1所示的頻率分布直方圖.

(Ⅰ)求頻率分布直方圖中字母a的值,并求該組的頻率; 
(Ⅱ)通過(guò)頻率分布直方圖,估計(jì)該市居民每月的用水量的中位數(shù)m的值(保留兩位小數(shù)); 
(Ⅲ)如圖2是該市居民張某2016年1~6月份的月用水費(fèi)y(元)與月份x的散點(diǎn)圖,其擬合的線性回歸方程是$\widehat{y}$=2x+33,若張某2016年1~7月份水費(fèi)總支出為312元,試估計(jì)張某7月份的用水噸數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.下列命題中真命題的個(gè)數(shù)是( 。
①已知m,n是兩條不同直線,若m,n平行于同一平面α,則m與n平行;
②已知命題p:?x0∈R,使得x02-2x0+1<0,則¬p:?x∈R,都有x2-2x+1≥0;
③已知回歸直線的斜率的估計(jì)值是3,樣本點(diǎn)的中心為(1,2),則回歸直線方程為$\stackrel{∧}{y}$=3x+1
④若x,y,z∈R,且xyz≠0,則命題“x,y,z成等比數(shù)列”是“y=$\sqrt{xz}$”的充分不必要條件.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知雙曲線C1:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左頂點(diǎn)為M,拋物線C2:y2=-2ax的焦點(diǎn)為F,若在曲線C1的漸近線上存在點(diǎn)P使得PM⊥PF,則雙曲線C1離心率的取值范圍是( 。
A.(1,2)B.$({1,\frac{{3\sqrt{2}}}{4}}]$C.(1,+∞)D.$({\frac{{3\sqrt{2}}}{4},2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知集合A={x|1≤2x≤4},B={x|(x-a)(x-1)≤0}.
(I)求A;
(II)若A∩B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.設(shè)由直線xsinα-ycosα-6=0(參數(shù)α∈R)為元素所構(gòu)成的集合為T,若l1,l2,l3∈T,且l1,l2,l3為一個(gè)等腰直角三角形三邊所在直線,且坐標(biāo)原點(diǎn)在該直角三角形內(nèi)部,則該等腰直角三角形的面積為36+24$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若函數(shù)$f(x)=\frac{{{a^x}-1}}{{{a^x}+1}}+$${log_a}({\frac{1-x}{1+x}})$(a>0,a≠1),f(m)=n,m∈(-1,1),則f(-m)=( 。
A.nB.-nC.0D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知a=21.3,b=40.7,c=log38,則a,b,c的大小關(guān)系為( 。
A.a<c<bB.b<c<aC.c<a<bD.c<b<a

查看答案和解析>>

同步練習(xí)冊(cè)答案