3.某市為了引導(dǎo)居民合理用水,居民生活用水實行二級階梯水價計量辦法,具體如下:第一階梯,每戶居民月用水量不超過12噸,價格為4元/噸;第二階梯,每戶居民月用水量超過12噸,超過部分的價格為8元/噸.為了了解全市居民月用水量的分布情況,通過抽樣獲得了100戶居民的月用水量(單位:噸),將數(shù)據(jù)按照[0,2],(2,4],…,(14,16]分成8組,制成了如圖1所示的頻率分布直方圖.

(Ⅰ)求頻率分布直方圖中字母a的值,并求該組的頻率; 
(Ⅱ)通過頻率分布直方圖,估計該市居民每月的用水量的中位數(shù)m的值(保留兩位小數(shù)); 
(Ⅲ)如圖2是該市居民張某2016年1~6月份的月用水費y(元)與月份x的散點圖,其擬合的線性回歸方程是$\widehat{y}$=2x+33,若張某2016年1~7月份水費總支出為312元,試估計張某7月份的用水噸數(shù).

分析 (Ⅰ)根據(jù)小長方形的面積之和為1,即可求出a,
(Ⅱ)由頻率分布直方圖估計樣本數(shù)據(jù)的中位數(shù),規(guī)律是:中位數(shù),出現(xiàn)在概率是0.5的地方,
(Ⅲ)根據(jù)回歸方程即可求出答案

解答 解:(Ⅰ)∵(0.02+0.04+0.08+a+0.13+0.03+0.02)×2=1,
∴a=0.10,
第四組的頻率為0.1×2=0.2,
(Ⅱ)∵0.02×2+0.04×2+0.08×2+0.10×2+(m-8)×0.13=0.5
∴m=8+$\frac{0.5-0.48}{0.13}$≈8.15.
(Ⅲ)∵$\overline{x}$=$\frac{1}{6}$(1+2+3+4+5+6)=$\frac{7}{2}$,且$\widehat{y}$=2x+33,
∴$\overline{y}$=2×$\frac{7}{2}$+33=40,
∴所以張某7月份的水費為312-6×40=72,
設(shè)張某7月份的用水噸數(shù)為x噸,
∵12×4=48<72,
∴12×4+(x-12)×8=72,
解得x=15,
則張某7月份的用水噸數(shù)為15噸

點評 本題考查了頻率分布直方圖的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.學(xué)校為了了解A、B兩個班級學(xué)生在本學(xué)期前兩個月內(nèi)觀看電視節(jié)目的時長,分別從這兩個班級中隨機抽取10名學(xué)生進行調(diào)查,得到他們觀看電視節(jié)目的時長分別為(單位:小時):A班:5、5、7、8、9、11、14、20、22、31;B班:3、9、11、12、21、25、26、30、31、35.
將上述數(shù)據(jù)作為樣本.
(Ⅰ)繪制莖葉圖,并從所繪制的莖葉圖中提取樣本數(shù)據(jù)信息(至少寫出2條);
(Ⅱ)分別求樣本中A、B兩個班級學(xué)生的平均觀看時長,并估計哪個班級的學(xué)生平均觀看的時間較長;
(Ⅲ)從A班的樣本數(shù)據(jù)中隨機抽取一個不超過11的數(shù)據(jù)記為a,從B班的樣本數(shù)據(jù)中隨機抽取一個不超過11的數(shù)據(jù)記為b,求a>b的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.以角θ的頂點為坐標原點,始邊為x軸的非負半軸,建立平面直角坐標系,角θ終邊過點P(1,2),則$tan(θ+\frac{π}{4})$=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=sin(3x+3φ)-2sin(x+φ)cos(2x+2φ),其中|φ|<π,若f(x)在區(qū)間$({\frac{π}{6},\frac{2π}{3}})$上單調(diào)遞減,則φ的最大值為$\frac{5π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}的奇數(shù)項成等差數(shù)列,偶數(shù)項成等比數(shù)列,且公差和公比都是2,若對滿足m+n≤5的任意正整數(shù)m,n,均有am+an=am+n成立.
(I)求數(shù)列{an}的通項公式;
(Ⅱ)令${b_n}=\frac{{{a_{2n-1}}}}{{{a_{2n}}}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若關(guān)于x的不等式x(1+lnx)+2k>kx的解集為A,且(2,+∞)⊆A,則整數(shù)k的最大值是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.拋物線y2=2px(p>0)的焦點為F,其準線與x軸的交點為N,過點F作直線與此拋物線交于A、B兩點,若$\overrightarrow{NB}•\overrightarrow{AB}$=0,且|$\overrightarrow{AF}$|-|$\overrightarrow{BF}$|=4,則p的值為(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.給出下列兩個命題:命題p:若在邊長為1的正方形ABCD內(nèi)任取一點M,則|MA|≤1的概率為$\frac{π}{4}$.命題q:若函數(shù)f(x)=x+$\frac{4}{x},({x∈[{1,2}]})$,則f(x)的最小值為4.則下列命題為真命題的是( 。
A.p∧qB.¬pC.p∧(¬q)D.(¬p)∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某市政協(xié)課題組成員為了解中學(xué)生的身體素質(zhì)情況,決定在該市高二的14400名男生和9600名女生中按分層抽樣的方法抽取30名學(xué)生,對他們課余參加體育鍛煉時間進行問卷調(diào)查,將學(xué)生課余參加體育鍛煉時間的情況分三類:A類(課余不參加體育鍛煉),B類(課余參加體育鍛煉但平均每周參加體育鍛煉的時間不超過3小時),C類(課余參加體育鍛煉且平均每周參加體育鍛煉的時間超過3小時),調(diào)查結(jié)果如表:
  A類B類 C類 
 男生5 x5
 女生y53
(1)求出表中x、y的值;
(2)根據(jù)表格統(tǒng)計數(shù)據(jù),完成下面的列聯(lián)表,并判斷是否有90%的把握認為“課余不參加體育鍛煉“與性別有關(guān);
  男生女生 總計 
課余不參加體育鍛煉   
課余參加體育鍛煉   
 總計   
(3)從抽出的女生中再抽取3人進一步了解情況,記X為抽取的這3名女生中A類人數(shù)和C類人數(shù)差的絕對值,求X的均值(即數(shù)學(xué)期望).
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
 P(K2≥k00.10 0.05 0.01 
 k0 2.706 3.841 6.635

查看答案和解析>>

同步練習(xí)冊答案