【題目】已知函數(shù).

1)若曲線處的切線的斜率為2,求函數(shù)的單調區(qū)間;

2)若函數(shù)在區(qū)間上有零點,求實數(shù)的取值范圍.是自然對數(shù)的底數(shù),

【答案】(1)函數(shù)的單調增區(qū)間為,單調減區(qū)間為(2)

【解析】

1)求導,由導數(shù)的結合意義可求得,進而得到函數(shù)解析式,再解關于導函數(shù)的不等式即可得到單調區(qū)間;
2)對進行分類討論,利用導數(shù),結合零點的存在性定理建立不等式即可求解.

1)函數(shù)的定義域為,

,

,所以

此時,定義域為,

,解得;令,解得;

所以函數(shù)的單調增區(qū)間為,單調減區(qū)間為.

2)函數(shù)在區(qū)間上的圖象是一條不間斷的曲線.

由(1)知,

1)當時,對任意,,則,所以函數(shù)在區(qū)間上單調遞增,此時對任意,都有成立,從而函數(shù)在區(qū)間上無零點;

2)當時,令,得,其中,

①若,即,則對任意,所以函數(shù)在區(qū)間上單調遞減,由題意得,且,解得,其中,即,

所以的取值范圍是;

②若,即,則對任意,所以函數(shù)在區(qū)間上單調遞增,此時對任意,都有成立,從而函數(shù)在區(qū)間上無零點;

③若,即,則對任意;所以函數(shù)在區(qū)間上單調遞增,對任意,都有成立;

對任意,,函數(shù)在區(qū)間上單調遞減,由題意得

,解得,

其中,即,

所以的取值范圍是.

綜上可得,實數(shù)的取值范圍是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C:(a>b>0)的左、右焦點分別為F1,F(xiàn)2,且離心率為,M為橢圓上任意一點,當∠F1MF2=90°時,△F1MF2的面積為1.

(Ⅰ)求橢圓C的方程;

(Ⅱ)已知點A是橢圓C上異于橢圓頂點的一點,延長直線AF1,AF2分別與橢圓交于點B,D,設直線BD的斜率為k1,直線OA的斜率為k2,求證:k1·k2等于定值.

【答案】(Ⅰ)(Ⅱ)見解析

【解析】

Ⅰ)由題意可求得,則,橢圓的方程為.

Ⅱ)設,,

當直線的斜率不存在或直線的斜率不存在時,.

當直線的斜率存在時,,設直線的方程為,聯(lián)立直線方程與橢圓方程,結合韋達定理計算可得直線的斜率為,直線的斜率為,.綜上可得:直線的斜率之積為定值.

Ⅰ)設由題,

解得,則,橢圓的方程為.

Ⅱ)設,當直線的斜率不存在時,

,則,直線的方程為代入

可得 ,,則,

直線的斜率為,直線的斜率為

,

當直線的斜率不存在時,同理可得.

當直線、的斜率存在時,設直線的方程為

則由消去可得:,

,則,代入上述方程可得:

,

設直線的方程為,同理可得

直線的斜率為

直線的斜率為, .

所以,直線的斜率之積為定值,即.

【點睛】

(1)解答直線與橢圓的題目時,時常把兩個曲線的方程聯(lián)立,消去x(y)建立一元二次方程,然后借助根與系數(shù)的關系,并結合題設條件建立有關參變量的等量關系.

(2)涉及到直線方程的設法時,務必考慮全面,不要忽略直線斜率為0或不存在等特殊情形.

型】解答
束】
21

【題目】已知函數(shù)f(x)=(x+b)(-a),(b>0),在(-1,f(-1))處的切線方程為(e-1)x+ey+e-1=0.

(Ⅰ)求a,b;

(Ⅱ)若方程f(x)=m有兩個實數(shù)根x1,x2,且x1<x2,證明:x2-x1≤1+

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】海水稻就是耐鹽堿水稻,是一種介于野生稻和栽培稻之間的普遍生長在海邊灘涂地區(qū)的水稻,具有抗旱抗?jié)场⒖共∠x害、抗倒伏抗鹽堿等特點.近年來,我國的海水稻研究取得了階段性成果,目前已開展了全國大范圍試種.某農業(yè)科學研究所分別抽取了試驗田中的海水稻以及對照田中的普通水稻各株,測量了它們的根系深度(單位:),得到了如下的莖葉圖,其中兩豎線之間表示根系深度的十位數(shù),兩邊分別是海水稻和普通水稻根系深度的個位數(shù),則下列結論中不正確的是(

A.海水稻根系深度的中位數(shù)是

B.普通水稻根系深度的眾數(shù)是

C.海水稻根系深度的平均數(shù)大于普通水稻根系深度的平均數(shù)

D.普通水稻根系深度的方差小于海水稻根系深度的方差

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象是自原點出發(fā)的一條折線,當)時,該圖象是斜率為的線段,其中常數(shù),數(shù)列)定義.

1)若,求;

2)求的表達式及的解析式(不必求的定義域);

3)當時,求的定義域,并證明的圖象與的圖象沒有橫坐標大于1的公共點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

已知橢圓的左、右焦點分別為,,點是橢圓的一個頂點,是等腰直角三角形.

1)求橢圓的方程;

2)設點是橢圓上一動點,求線段的中點的軌跡方程;

3)過點分別作直線交橢圓于,兩點,設兩直線的斜率分別為,,

,探究:直線是否過定點,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某專賣店銷售一新款服裝,日銷售量(單位為件)f(n) 與時間n1≤n≤30、nN*)的函數(shù)關系如下圖所示,其中函數(shù)f(n) 圖象中的點位于斜率為 5 和-3 的兩條直線上,兩直線交點的橫坐標為m,且第m天日銷售量最大.

(Ⅰ)f(n) 的表達式,及前m天的銷售總數(shù);

(Ⅱ)按以往經驗,當該專賣店銷售某款服裝的總數(shù)超過 400 件時,市面上會流行該款服裝,而日銷售量連續(xù)下降并低于 30 件時,該款服裝將不再流行.試預測本款服裝在市面上流行的天數(shù)是否會超過 10 天?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓)的離心率為,短軸長為.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)若直線與橢圓交于不同的兩點,且線段的垂直平分線過定點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左右焦點分別是,是橢圓外的動點,滿足.點是線段與該橢圓的交點,點在線段上,并且滿足,.

(1)當時,用點P的橫坐標表示;

(2)求點的軌跡的方程;

(3)在點的軌跡上,是否存在點,使的面積?若存在,求出的正切值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖一塊長方形區(qū)域,,,在邊的中點處有一個可轉動的探照燈,其照射角始終為,,探照燈照射在長方形內部區(qū)域的面積為.

(1)當時,求關于的函數(shù)關系式;

(2)當時,求的最大值;

(3)若探照燈每9分鐘旋轉“一個來回”(轉到,再回到,稱“一個來回”,忽略處所用的時間),且轉動的角速度大小一定,設邊上有一點,且,求點在“一個來回”中被照到的時間.

查看答案和解析>>

同步練習冊答案