6.已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}滿足a1=1,a1+a3+a5=21,則a2+a4+a6=( 。
A.-42B.84C.42D.168

分析 設(shè)各項(xiàng)均為正數(shù)的等比數(shù)列{an}的公比為q>0,a1=1,a1+a3+a5=21,可得1+q2+q4=21,解得q.即可得出.

解答 解:設(shè)各項(xiàng)均為正數(shù)的等比數(shù)列{an}的公比為q>0,
∵a1=1,a1+a3+a5=21,
∴1+q2+q4=21,解得q=2.
則a2+a4+a6=q(a1+a3+a5)=2×21=42,
故選:C.

點(diǎn)評 本題考查了等比數(shù)列的通項(xiàng)公式及其性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知向量$\overrightarrow{a}$=(2sinx-1,sin(2x+$\frac{π}{3}$)),$\overrightarrow$=(1,cos(2x+$\frac{π}{6}$)),$\overrightarrow{c}$=(cosx,1),f(x)=($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow{c}$
(1)求函數(shù)f(x)在[0,π]上的單調(diào)遞增區(qū)間;
(2)△ABC的角A,B,C的對邊長分別為a,b,c,且a2,b2,c2成等差數(shù)列,求f(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+tcosα}\\{y=\sqrt{3}+tsinα}\end{array}\right.$(t為參數(shù)),其中0≤α<π.在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C1:ρ=4cosθ.直線l與曲線C1相切.
(1)將曲線C1的極坐標(biāo)方程化為直角坐標(biāo)方程,并求α的值.
(2)已知點(diǎn)Q(2,0),直線l與曲線C2:x2+$\frac{{y}^{2}}{3}$=1交于A,B兩點(diǎn),求△ABQ的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.(x2-x-2)3展開式中x項(xiàng)的系數(shù)為(  )
A.-12B.12C.4D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.由于空氣污染嚴(yán)重,某工廠生產(chǎn)了兩種供人們外出時便于攜帶的呼吸裝置,其質(zhì)量按測試指標(biāo)劃分:指標(biāo)大于或等于82為合格品,小于82為次品.現(xiàn)隨機(jī)抽取這兩種裝置各100件進(jìn)行檢測,檢測結(jié)果統(tǒng)計如下:
測試指標(biāo)[70,76][76,82][82,88][88,94][94,100]
裝置甲81240328
裝置乙71840296
(Ⅰ)試分別估計裝置甲、裝置乙為合格品的概率;
(Ⅱ)生產(chǎn)一件裝置甲,若是合格品可盈利40元,若是次品則虧損5元;生產(chǎn)一件裝置乙,若是合格品可盈利50元,若是次品則虧損10元.在(Ⅰ)的條件下,
(1)記X為生產(chǎn)一件裝置甲和生產(chǎn)一件裝置乙所得的總利潤,求隨機(jī)變量X的分布列和數(shù)學(xué)期望;
(2)求生產(chǎn)5件裝置乙所獲得的利潤不少于140元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足acosC=b-$\frac{{\sqrt{3}}}{2}$c.
(Ⅰ)求角A的大;
(Ⅱ)若B=$\frac{π}{6}$,AC=4,求BC邊上的中線AM的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={x|x2-2x≤0},B={-1,0,1,2},則A∩B=( 。
A.[0,2]B.{0,1,2}C.(-1,2)D.{-1,0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=x2-x,g(x)=ex-ax-1(e為自然對數(shù)的底數(shù)).
(1)討論函數(shù)g(x)的單調(diào)性;
(2)當(dāng)x>0時,f(x)≤g(x)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}滿足a1=3,an+1=$\frac{{3{a_n}-1}}{{{a_n}+1}}$.
(1)證明:數(shù)列$\left\{{\frac{1}{{{a_n}-1}}}\right\}$是等差數(shù)列,并求{an}的通項(xiàng)公式;
(2)令bn=a1a2•…•an,求數(shù)列$\left\{{\frac{1}{b_n}}\right\}$的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊答案