4.已知復(fù)數(shù)z=a+i,a∈R,若z+$\overline{z}$=2,則復(fù)數(shù)z的共軛復(fù)數(shù)$\overline{z}$=( 。
A.1+iB.1-iC.-1+iD.-1-i

分析 由已知結(jié)合復(fù)數(shù)相等列式求得a值,則復(fù)數(shù)z的共軛復(fù)數(shù)$\overline{z}$可求.

解答 解:由z=a+i,a∈R,得$\overline{z}=a-i$,
又z+$\overline{z}$=2,∴2a=2,得a=1.
∴$\overline{z}=1-i$.
故選:B.

點(diǎn)評 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了共軛復(fù)數(shù)的概念,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若函數(shù)y=sin(πx+φ)過點(diǎn)$({\frac{1}{6},1})$,則f(0)=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若$sinθcosθ=\frac{1}{2}$,則$tanθ-\frac{cosθ}{sinθ}$的值是( 。
A.-2B.0C.±2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知拋物線x2=2py(p>0)的弦AB的中點(diǎn)的縱坐標(biāo)為3,且|AB|的最大值為8,則p的值為(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=x-alnx-$\frac{x}-2({a,b∈{R}})$.
(Ⅰ)當(dāng)a-b=1,a>1時,討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)當(dāng)b=-1,a≤4時,不等式f(x)<-$\frac{3}{x}$在區(qū)間[2,4]上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知p:a-4<x<a+4,q:(x-2)(x-1)<0,若¬p是¬q的充分條件,則實數(shù)a的取值范圍是[-2,5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在空間直角坐標(biāo)系中,平面α內(nèi)有M(m,-2,1)和N(0,m,3)兩點(diǎn),平面α的一個法向量為$\overrightarrow{n}$=(3,1,2),則m等于( 。
A.-2B.2C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.直線x-y+3=0被圓x2+y2+4x-4y+6=0截得的弦長等于(  )
A.2$\sqrt{3}$B.$\sqrt{6}$C.$\sqrt{3}$D.$\frac{\sqrt{6}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知定義在R上的奇函數(shù)f(x)在(0,+∞)上單調(diào)遞增,f(1)=0,若f(x-2)≥0,則x的取值范圍是( 。
A.[1,3]B.[1,2]∪[2,3]C.[1,2]∪[3,+∞]D.[-∞,1]∪[3,+∞]

查看答案和解析>>

同步練習(xí)冊答案